Publications:

Electric bus fleet size and mix problem with optimization of charging infrastructure
Battery electric buses are seen as a well-suited technology for the electrification of road-based public transport. However, the transition process from conventional diesel to electric buses faces major hurdles caused by range limitations and required charging times of battery buses. This work addresses these constraints and provides a methodology for the cost-optimized planning of depot charging battery bus fleets and their corresponding charging infrastructure. The defined problem covers the scheduling of battery buses, the fleet composition, and the optimization of charging infrastructure in a joint process. Vehicle schedule adjustments are monetized and evaluated together with the investment and operational costs of the bus system. The resulting total cost of ownership enables a comparison of technical alternatives on a system level, which makes this approach especially promising for feasibility studies comprising a wide range of technical concepts. Two scenarios of European cities are analyzed and discussed in a case study, revealing that the cost structure is influenced significantly by the considered bus type and its technical specifications. For example, the total energy consumption of the considered lightweight bus is up to 32% lower than the total consumption of the high range bus, although the deadheading mileage increases. However, the total costs of ownership for operating both bus types are relatively close, due to the increased fleet size and driver expenses required for the lightweight bus system. The case study furthermore reveals that a mixed fleet of different bus types could be advantageous depending on the operational characteristics of the bus route.
The multi-port berth allocation problem with speed optimization and emission considerations

The container shipping industry faces many interrelated challenges and opportunities, as its role in the global trading system has become increasingly important over the last decades. On the one side, collaboration between port terminals and shipping liners can lead to costs savings and help achieve a sustainable supply chain, and on the other side, the optimization of operations and sailing times leads to reductions in bunker consumption and, thus, to fuel cost and air emissions reductions. To that effect, there is an increasing need to address the integration opportunities and environmental issues related to container shipping through optimization. This paper focuses on the well known Berth Allocation Problem (BAP), an optimization problem assigning berthing times and positions to vessels in container terminals. We introduce a novel mathematical formulation that extends the classical BAP to cover multiple ports in a shipping network under the assumption of strong cooperation between shipping lines and terminals. Speed is optimized on all sailing legs between ports, demonstrating the effect of speed optimization in reducing the total time of the operation, as well as total fuel consumption and emissions. Furthermore, the model implementation shows that an accurate speed discretization can result in far better economic and environmental results.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Management Science, Operations Management, Transport DTU, Liverpool John Moores University
Authors: Venturini, G. (Intern), Iris, C. (Intern), Kontovas, C. A. (Ekstern), Larsen, A. (Intern)
Pages: 142-159
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Transportation Research. Part D: Transport & Environment
Volume: 54
ISSN (Print): 1361-9209
Ratings:
BFI (2018): BFI-level 2
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.08 SJR 1.195 SNIP 1.573
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.143 SNIP 1.379 CiteScore 2.65
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.427 SNIP 1.953 CiteScore 2.49
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.213 SNIP 1.663 CiteScore 2.08
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.061 SNIP 1.705 CiteScore 2
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 0.962 SNIP 1.72 CiteScore 1.86
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Exact and Heuristic Methods for Integrated Container Terminal Problems

General information
State: Published
Organisations: Department of Management Engineering, Management Science, Operations Management, Transport DTU, Operations Research
Authors: Iris, C. (Intern), Larsen, A. (Intern), Røpke, S. (Intern), Pacino, D. (Intern)
Number of pages: 231
Publication date: May 2016

Publication information
Publisher: DTU Management Engineering
Original language: English
Main Research Area: Technical/natural sciences
Electronic versions:
PhD_Thesis_Cagatay_Iris_010516.pdf
Source: PublicationPreSubmission
Source-ID: 128880770
Publication: Research › Ph.D. thesis – Annual report year: 2017

An adaptive large neighborhood search heuristic for the Electric Vehicle Scheduling Problem
This paper addresses the Electric Vehicle Scheduling Problem (E-VSP), in which a set of timetabled bus trips, each starting from and ending at specific locations and at specific times, should be carried out by a set of electric buses or vehicles based at a number of depots with limited driving ranges. The electric vehicles are allowed to be recharged fully or partially at any of the given recharging stations. The objective is to firstly minimize the number of vehicles needed to cover all the timetabled trips, and secondly to minimize the total traveling distance, which is equivalent to minimizing the total deadheading distance. A mixed integer programming formulation as well as an Adaptive Large Neighborhood Search (ALNS) heuristic for the E-VSP are presented. ALNS is tested on newly generated E-VSP benchmark instances. Result shows that the proposed heuristic can provide good solutions to large E-VSP instances and optimal or near-optimal solutions to small E-VSP instances.

General information
State: Published
Organisations: Department of Transport, Department of Management Engineering, Management Science, Transport optimisation and technique, Xi’an Jiaotong–Liverpool University, Arizona State University
Authors: Wen, M. (Ekstern), Linde, E. (Intern), Røpke, S. (Intern), Mirchandani, P. (Ekstern), Larsen, A. (Intern)
Number of pages: 11
Pages: 73-83
Electric vehicles, Large neighborhood search, Partial charging, Vehicle scheduling

DOIs: 10.1016/j.cor.2016.06.013
Green corridors in freight logistics

The subject of this thesis is ‘green corridors,’ a European concept denoting a concentration of freight traffic between major hubs and by relatively long distances. Since their inception in 2007, green corridors have gained popularity as a policy tool that enhances the overall environmental sustainability of transport through improving the competitiveness of the railway and waterborne modes that exhibit better environmental characteristics than road haulage.

The thesis has three objectives, all related to green corridors. The first one aims to develop a methodology for the quantitative monitoring of the performance of a green corridor in terms of pre-specified Key Performance Indicators (KPIs). The thesis builds on previous own work under the EU-financed SuperGreen project and applies the new methodology on the GreCOR corridor extending from Oslo to Rotterdam. The scope of the two other objectives relates to environmental indicators viewed in the context of maritime corridors. The second objective seeks to develop a simple and practical framework for classifying the carbon emission reduction measures that have been proposed for the shipping industry, while the third one examines the impacts on modal split and emissions of designating the Mediterranean Sea as a Sulphur Emission Control Area (SECA), where stricter limits on the sulphur content of marine fuels apply.

In relation to the first objective, the thesis reviews the most important EU transport policy documents, discusses the available definitions of green corridors, identifies the characteristics that distinguish a green corridor from any other efficient corridor, and uses these characteristics as criteria to investigate the relation between the so-called ‘core network corridors’ of the trans-European transport network and the green corridor concept. Once the rationale for a performance monitoring scheme has been established, the thesis critically reviews the SuperGreen methodology which consists of: (i) decomposing the corridor into transport chains, (ii) selecting a sample of typical chains, (iii) assessing these chains through a set of KPIs, and (iv) aggregating the chain-level KPIs to corridor-level ones using proper weights. Unlike SuperGreen that suggests a study-based approach for constructing the corridor sample, the thesis proposes founding the selection of typical chains on the outcome of specialised transport models. The periodic collection of stakeholder data on the selected ‘basket’ of transport services would then enable monitoring progress towards meeting the objectives that corridor management has set.

The Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times

In this talk, we deal with a generalization of the well-known Vehicle Scheduling Problem (VSP) that we call Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times (SVSPSP-FDT). The SVSPSP-FDT generalizes the VSP because the original timetables of the trips can be changed (i.e., shifted and stretched) in order to minimize a new objective function that aims at minimizing the operational costs plus the waiting times of the passengers at transfer points. Contrary to most generalizations of the VSP, the SVSPSP-FDT establishes the possibility of changing trips’ dwell times at important transfer points based on expected passenger flows. We introduce a compact mixed integer formulation of the SVSPSP-FDT able to address small instances. We also present a meta-heuristic approach to solve medium/large instances of the problem. The effectiveness of the proposed solution methods is shown on a set of real-life instances provided by the main bus operator in the greater Copenhagen area. The effects of considering flexible dwell times on the objective function and on the provided solutions are also analysed.

The Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times
Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results

Most of the operational problems in container terminals are strongly interconnected. In this paper, we study the integrated Berth Allocation and Quay Crane Assignment Problem in seaport container terminals. We will extend the current state-of-the-art by proposing novel set partitioning models. To improve the performance of the set partitioning formulations, a number of variable reduction techniques are proposed. Furthermore, we analyze the effects of different discretization schemes and the impact of using a time-variant/invariant quay crane allocation policy. Computational experiments show that the proposed models significantly improve the benchmark solutions of the current state-of-art optimal approaches.
Hybrid Heuristic Approaches for Tactical Berth Allocation Problem

Tactical berth allocation problem deals with: the berth allocation (as-signs and schedules vessels to berth-positions), and the quay crane (QC) assignment (finds number of QCs that will serve). In this work, we strengthen the current mathematical models (MM) with novel lower bounds and valid inequalities. And, we propose a hybrid heuristic which combines MM with greedy and search heuristics. Results show that problem can be solved efficiently respect to optimality and computational time.

General information
State: Published
Organisations: Department of Transport, Transport optimisation and technique, Department of Management Engineering, Management Science
Authors: Iris, C. (Intern), Larsen, A. (Intern), Pacino, D. (Intern), Røpke, S. (Intern)
Number of pages: 1
Publication date: 2014
The Simultaneous Vehicle Scheduling and Passenger Service Problem

Passengers using public transport systems often experience waiting times when transferring between two scheduled services. In this paper we propose a planning approach that seeks to obtain a favourable trade-off between the two contrasting objectives, passenger service and operating cost, by modifying the timetable. The planning approach is referred to as the simultaneous vehicle scheduling and passenger service problem (SVSPSP). The SVSPSP is modelled as an integer programming problem and solved using a large neighborhood search metaheuristic. The proposed framework is tested on data inspired by the express-bus network in the Greater Copenhagen area. The results are encouraging and indicate a potential decrease of passenger transfer waiting times in the network of up to 20%, with the vehicle scheduling costs remaining mostly unaffected.
Improved Models to Integrated Berth Allocation-Quay Crane Assignment Problem: A Computational Comparison and Novel Solution Approaches

Nowadays, over 60% of the world's deep-sea cargo is being placed in containers and transported by ship via container terminals and seaports. Hence, the need for optimization in container terminal operations has become more and more important in recent years. The productivity of container terminals heavily relies on the efficiency of quay cranes operations, and the usage of the berthing area. Optimizing the allocation of ships to berth and the related assignment of cranes are important problems that are mostly covered as two separate cases in the literature. However, since the handling time of the vessels primarily depends on the number of containers to be handled and the number of cranes deployed, it would be beneficial to consider the integration of those two problems. This work extends the state-of-the-art by strengthening the current best mathematical formulation. Computational experiments are carried out to analyze the performance of the new formulation with respect to solution quality and execution time.

General information
State: Published
Organisations: Department of Transport, Transport optimisation and technique, Department of Management Engineering, Management Science
Authors: Iris, C. (Intern), Pacino, D. (Intern), Røpke, S. (Intern), Larsen, A. (Intern)
Number of pages: 3
Publication date: 2013
Main Research Area: Technical/natural sciences
Berth Allocation,, Quay Crane Assignment, Valid Inequalities
Links:
Source: dtu
Source-ID: u::8741
Publication: Research - peer-review › Paper – Annual report year: 2013

Integrated Berth Allocation-Quay Crane Assignment Problem: Reformulations, Improved Constraints and Computational Results
Nowadays, large container terminals can process more than 30 million containers a year, and are constantly in search for the best ways to optimize processing time and deliver high quality, and profitable, services. Most of the operational problems on a container terminal are interconnected. The productivity of container terminals heavily relies on the efficiency of quay cranes operations, and the usage of the berthing area. Optimizing the allocation of ships to berth and the related assignment of cranes are important problems that are mostly covered as two separate cases in the literature. However, since the handling time of the vessels primarily depends on the number of containers to be handled and the number of cranes deployed, it would be beneficial to consider the integration of those two problems. In this work we extend the current state of the art by strengthening the current best formulation and by proposing novel set partitioning models.
Finally, computational experiments are carried out to analyze the performances of the new formulations with respect to modeling capabilities, solution quality and execution time. Considerable amount of studies have been done on the berth allocation problem (BAP) and the quay crane assignment problem (QCAP). Such integrated problem is known in the literature ([1]) as the Berth Allocation and Crane Assignment Problem (BACAP). The state-of-the-art [1] models this problem using two decision variables X_{ij} and Y_{ij}, representing respectively the partial order of the time and space dimension of the berth assignment, where i and j are two vessels. Moreover the variables r_{itq} define the number of cranes q to be assigned to vessel i at time t, and a set of auxiliary variables such as the vessel start time S_i. An optimal solution to the BACAP minimizes a number of operational costs, such as the tardiness of the schedule, vessel speedup cost, and crane operation cost. The contribution of this work is twofold. First, we improve the model presented in [1] by proposing a number of valid inequalities. Second, we introduce a novel set partitioning formulation and present preliminary results.

We propose an improved version of this model in the form of a set of valid inequalities aimed at improving the LP bound of the formulation. First we focus on the vessel start time. Increasing these bounds will, most likely, increase the lower bound obtained from LP relaxation since start-time variables S_i are integrated into objective function. Inequality (1) is based on the following two observations. First, if vessel i berths before vessel j ($X_{ij}=1$), then the start time of vessel j (S_j) should be larger than the start time of vessel i plus its minimum expected processing time ($m_i R_{max}^i$). Second, the start time of j cannot be earlier than the earliest possible time of arrival (EST). Another inequality forces at most one kind of crane assignment plan for each of periods and vessels (2). The berthing time of vessel should be within the interval of minimum and maximum possible processing time (3). Finally, there cannot be any processing before the earliest arrival time of vessels (4). Preliminary results on the first 10 instances of the benchmark in [1] are presented in Table 1. The table compares the model from [1] and our improved version (BACAP+). It is observed that given the time limit of 10 minutes, BACAP+ finds improvements.

<table>
<thead>
<tr>
<th>Ins.</th>
<th>ZLB Gap</th>
<th>CPU Time</th>
<th>Number of columns</th>
<th>Column Time</th>
<th>Solver Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meisel and Bierwirth [1] Results</td>
<td>Valid Inequalities (BACAP+)</td>
<td>Meisel and Bierwirth [1] Results</td>
<td>GAP in Time ZLB Gap</td>
<td>CPU Time</td>
<td>Number of columns</td>
</tr>
<tr>
<td>184,184,0</td>
<td>0,0%</td>
<td>180,794,10%</td>
<td>600</td>
<td>84,180,794,10%</td>
<td>600*</td>
</tr>
<tr>
<td>253,953,9</td>
<td>0,0%</td>
<td>289,6*</td>
<td>53,9</td>
<td>53,953,90,00%</td>
<td>31,4</td>
</tr>
<tr>
<td>556,856,8</td>
<td>0,0%</td>
<td>600</td>
<td>556,856,80,00%</td>
<td>56,8</td>
<td>56,856,80,00%</td>
</tr>
<tr>
<td>657,657,6</td>
<td>0,0%</td>
<td>27</td>
<td>657,657,60,00%</td>
<td>65,2</td>
<td>65,256,23,38%</td>
</tr>
<tr>
<td>768,067,5</td>
<td>0,0%</td>
<td>1050,56,59,21%</td>
<td>68,067,9</td>
<td>68,067,90,19%</td>
<td>561</td>
</tr>
<tr>
<td>856,156,10,00%</td>
<td>51,3</td>
<td>815,785,70,31%</td>
<td>76,156,80,59%</td>
<td>76,156,80,59%</td>
<td>562</td>
</tr>
<tr>
<td>975,175,00,13%</td>
<td>75,00,15%</td>
<td>975,175,00,15%</td>
<td>975,175,00,15%</td>
<td>975,175,00,15%</td>
<td>975,175,00,15%</td>
</tr>
</tbody>
</table>

BACAP can also be formulated as Generalized Set Partitioning Problem (GSPP). The model is an extension of the BAP formulation in [2] where we add new set definitions and constraints that relate to the crane assignment. Here each column represents a feasible assignment plan for a vessel (that includes both crane allocation and berth assignment). Let the variable $\lambda_p \in \{0,1\}$ be the selection of the assignment plans $p \in \Omega$. The model minimizes the time dependent costs (D_p) and the crane assignment costs (C_p). Constraints ensure that each vessel is assigned to one plan, that at a given time t and position s at most one plan can be selected, and that at most one crane amount can be selected in a given plan with the knapsack constraint $\sum_{(p \in \Omega)} D_p \lambda_p \leq Q$ $\forall t \in T$, where the number of cranes is captured by the parameter Q. The results shown in Table 2 are for fixed number of QC through stay at port.

<table>
<thead>
<tr>
<th>Ins.</th>
<th>ZLB Gap</th>
<th>CPU Time</th>
<th>Number of columns</th>
<th>Column Time</th>
<th>Solver Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meisel and Bierwirth [1] results for Fixed QC number</td>
<td>GSPP results for Fixed QC number</td>
<td>Ins.</td>
<td>ZLB Gap</td>
<td>CPU Time</td>
<td>Number of columns</td>
</tr>
<tr>
<td>1X81,1-14%</td>
<td>120,89,09,031241050,56590,42</td>
<td>256,256,20,00%</td>
<td>556,56,256,233432142,88327,6</td>
<td>3X76,3-14,94%</td>
<td>120,85,785,724951839,16533,98</td>
</tr>
</tbody>
</table>

Results show that model [1] is not capable to find an integer solution in most cases where number of QC is not changing through the stay of vessel at terminal. However, set partitioning formulation obtains optimum values in reasonable computational time.

General information

State: Published

Organisations: Department of Transport, Transport optimisation and technique, Department of Management Engineering, Management Science

Authors: Iris, C. (Intern), Røpke, S. (Intern), Pacino, D. (Intern), Larsen, A. (Intern)

Number of pages: 2
Optimering af kollektiv transport

Routing of Electric Vehicles: Case Study of City Distribution in Copenhagen

In Copenhagen, Denmark, the preliminary steps of introducing an Urban Consolidation Centre (UCC) in the perimeter of the city centre has been taken. By implementing a UCC, interests of customers and distributors, as well as improvement of the local urban environment are sought considered [1]. The UCC service aims to consolidate urban freight, as well as implement additional aspects such as off-peak delivery and utilisation of alternatively fuelled vehicles.

In the specific case of Copenhagen, a comprehensive traffic survey was conducted in May 2011. The aim of the survey was to estimate freight magnitude and the distribution of goods in the old city centre. Based on the survey, analysis of possible UCC locations was carried out using simulation.

Distribution from the UCC is assumed to be conducted with electric vehicles (EVs) as they are considered suitable for the overall aim. However, compared to conventional distribution vehicles they have a limited driving range and a limited freight capacity. In this work, an Electric Vehicle Routing Problem with Time Windows (EVRPTW) is addressed. The EVs are allowed to recharge at certain customers or replenishment stations in order to continue a tour. Furthermore, intelligent location of these recharging points is considered. The objective is to find a least cost plan for routing and recharging the vehicles so that each customer is serviced by exactly one vehicle within its time windows and the vehicle capacity and driving range constraints are satisfied. The EVRPTW is a new problem that only has received little attention in the literature; see for example [2] and [3]. The costs are compared to distribution conducted by conventional vehicles. A heuristic method is developed and tested on the data generated on the basis of real-life collected data.

References

Routing of Electric Vehicles: City Distribution in Copenhagen
In this work, a Vehicle Routing Problem with Time Windows considering EV constraints of limited driving range and freight capacity is addressed (EVRPTW). The EVs are allowed to recharge at certain locations, and aspects of intelligent location of these recharging points are considered. The objective is to find the least cost plan for EV routing and compare this to conventional routing. A heuristic method is developed and tested on data based on real-life collected data on distribution vehicles in central Copenhagen, Denmark. The EVRPTW has so far received little attention in the literature.

The waste collection vehicle routing problem with time windows in a city logistics context
Collection of waste is an important logistic activity within any city. In this paper we study how to collect waste in an efficient way. We study the Waste Collection Vehicle Routing Problem with Time Window which is concerned with finding cost optimal routes for garbage trucks such that all garbage bins are emptied and the waste is driven to disposal sites while respecting customer time windows and ensuring that drivers are given the breaks that the law requires. We propose an adaptive large neighborhood search algorithm for solving the problem and illustrate the usefulness of the algorithm by showing that the algorithm can improve the objective of a set of instances from the literature as well as for instances provided by a Danish garbage collection company.
Solving a Vehicle Routing Problem with a non-linear load dependant cost function

General information
State: Published
Organisations: Department of Management Engineering, Operations Research, Department of Transport, Logistics & ITS
Authors: Spoorendonk, S. (Intern), Larsen, A. (Intern), Pisinger, D. (Intern), Røpke, S. (Intern)
Publication date: 2011
Main Research Area: Technical/natural sciences
Links:
http://www.uv.es/route2011/
Source: orbit
Source-ID: 284890
Publication: Research › Conference abstract for conference – Annual report year: 2011

Truende mangel på trafikplanlæggere og vejingeniører

General information
State: Published
Organisations: Logistics & ITS, Department of Transport, Section for Geotechnics and Geology, Department of Civil Engineering
Authors: Larsen, A. (Intern), Hansen, C. B. (Intern), Jørgensen, A. S. (Intern)
Pages: 18-21
Publication date: 2011
Main Research Area: Technical/natural sciences

Publication information
Journal: Trafik og Veje
Issue number: 8
ISSN (Print): 1903-7384
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
BFI (2016): BFI-level 1
BFI (2015): BFI-level 1
BFI (2014): BFI-level 1
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Disruption Management - Foreword

General information
State: Published
Organisations: Operations Research, Department of Management Engineering, Logistics & ITS, Department of Transport
Authors: Clausen, J. (Intern), Larsen, A. (Intern), Larsen, J. (Intern)
Pages: 807-808
Publication date: 2010
Main Research Area: Technical/natural sciences

Publication information
Journal: Computers & Operations Research
Volume: 37
Issue number: 5
ISSN (Print): 0305-0548
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.77 SJR 2.326 SNIP 2.151
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.979 SNIP 2.042 CiteScore 3.09
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.313 SNIP 2.33 CiteScore 3.12
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.622 SNIP 2.979 CiteScore 3.62
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.823 SNIP 2.82 CiteScore 3.36
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.472 SNIP 2.495 CiteScore 3.05
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.449 SNIP 2.489
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Disruption management in the airline industry—Concepts, models and methods

This paper provides a thorough review of the current state-of-the-art within airline disruption management of resources, including aircraft, crew, passenger and integrated recovery. An overview of model formulations of the aircraft and crew scheduling problems is presented in order to emphasize similarities between solution approaches applied to the planning and recovery problems. A brief overview of research within schedule robustness in airline scheduling is included in the review, since this proactive measure is a natural complement to disruption management.

General information
State: Published
Organisations: Operations Research, Department of Management Engineering, Logistics & ITS, Department of Transport
Authors: Clausen, J. (Intern), Larsen, A. (Intern), Larsen, J. (Intern), Rezanova, N. J. (Intern)
Pages: 809-821
Publication date: 2010
Main Research Area: Technical/natural sciences

Publication information
Journal: Computers & Operations Research
Volume: 37
Issue number: 5
ISSN (Print): 0305-0548
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.77 SJR 2.326 SNIP 2.151
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.979 SNIP 2.042 CiteScore 3.09
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.313 SNIP 2.33 CiteScore 3.12
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.622 SNIP 2.979 CiteScore 3.62
ISI indexed (2013): ISI indexed yes
disruption management, network models, airline optimization, crew recovery, passenger recovery, integrated recovery, aircraft recovery.

The Simultaneous Vehicle Scheduling and Passenger Service Problem

General information

State: Published
Organisations: Logistics & ITS, Department of Transport
Authors: Petersen, H. L. (Intern), Larsen, A. (Intern), Madsen, O. B. (Intern), Røpke, S. (Intern)
Publication date: 2010
Main Research Area: Technical/natural sciences
Electronic versions:
abstract.pdf
Source: orbit
Source-ID: 264180
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2010
Intelligent Freight Transport Systems: Visions for real-time distribution planning
The Danish innovation project entitled "Intelligent Freight Transport Systems" aims at developing prototype systems integrating public intelligent transport systems (ITS) with the technology in vehicles and equipment as well as the IT-systems at various transport companies. The objective is to enhance the efficiency and lower the environmental impact in freight transport. In this paper, a pilot project involving real-time waste collection at a Danish waste collection company is described, and a solution approach is proposed. The problem corresponds to the dynamic version of the waste collection problem which can be formulated as a dynamic version of the vehicle routing problem with time windows (VRPTW).

General information
State: Published
Organisations: Department of Transport
Authors: Overø, H. M. (Intern), Larsen, A. (Intern), Repke, S. (Intern)
Publication date: 2009

Host publication information
Title of host publication: 16th ITS World Congress CD-ROM
Main Research Area: Technical/natural sciences
Real-time planning, Vehicle routing problem with time windows, Freight transport, Waste collection
Electronic versions:
ITS World Congress - final paper.pdf
Source: orbit
Source-ID: 257999
Publication: Research - peer-review › Article in proceedings – Annual report year: 2009

A Data Set for the Simultaneous Vehicle Scheduling and Passenger Service Problem

General information
State: Published
Organisations: Operations Research, Department of Management Engineering, Logistics & ITS, Department of Transport
Authors: Petersen, H. L. (Intern), Larsen, A. (Intern), Madsen, O. B. (Intern), Repke, S. (Intern)
Publication date: 2008

Publication information
Place of publication: Kgs. Lyngby
Publisher: Technical University of Denmark, Transport
Edition: 1
Original language: English
Series: DTU Transport Technical Reports
Number: 2008-8
Main Research Area: Technical/natural sciences
vehicle scheduling, data set, passenger service
Source: orbit
Source-ID: 232361
Publication: Research › Report – Annual report year: 2008

Dynamic Airline Scheduling: An Analysis of the Potentials of Reflecting and Retiming
We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit increase for a major European airline. The results also indicate that applying DAS close to departure yields the largest potential.

General information
State: Published
Organisations: Department of Transport, Logistics & ITS, Jeppesen System AB, Scandinavian Airlines Sweden
Authors: Warburg, V. (Intern), Hansen, T. G. (Ekstern), Larsen, A. (Intern), Norman, H. (Ekstern), Andersson, E. (Ekstern)
Pages: 163-167
Publication date: 2008
Main Research Area: Technical/natural sciences

Publication Information
Journal: Journal of Air Transport Management
Dynamic Airline Scheduling: An Analysis of the Potentials of Refleeting and Retiming

We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit increase for a major European airline. The results also indicate that applying DAS close to departure yields the largest potential.
Recent developments in dynamic vehicle routing systems

General information
State: Published
Organisations: Logistics & ITS, Department of Transport, Northeastern University
Authors: Madsen, O. B. (Intern), Larsen, A. (Intern), Solomon, M. M. (Ekstern)
Number of pages: 590
Pages: 199-220
Publication date: 2008

Host publication information
Title of host publication: The Vehicle Routing Problem : Latest Advances and New Challenges
Volume: 43
Publisher: Springer
Editors: Golden, B., Raghavan, S., Wasil, E.
Edition: 1
ISBN (Print): 978-0-387-77777-1
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 232763
Publication: Research - peer-review › Book chapter – Annual report year: 2008

The Simultaneous Vehicle Scheduling and Passenger Service Problem

General information
State: Published
Organisations: Operations Research, Department of Management Engineering, Logistics & ITS, Department of Transport
Authors: Petersen, H. L. (Intern), Larsen, A. (Intern), Petersen, B. (Intern)
Publication date: 2008

Publication information
Place of publication: Kgs. Lyngby
Publisher: Technical University of Denmark, Transport
Edition: 1
Original language: English
Series: DTU Transport Technical Reports
Number: 2008-7
Main Research Area: Technical/natural sciences
vehicle scheduling, passenger service
Source: orbit
Source-ID: 232360
Publication: Research › Report – Annual report year: 2008

Airline Disruption Management - Perspectives, Experiences and Outlook
Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused by for example severe weather, technical problems and crew sickness. Thus, the field of Airline Disruption Management has emerged within the past few years. The increased focus on cutting
cost at the major airlines has intensified the interest in the development of new and cost efficient methods to handle airline disruptions. The purpose of this paper is twofold. In the first part it offers an introduction to airline disruption management provides the readers with a description of the planning processes and delivers a detailed overview of the numerous aspects of airline disruption management. In the second part we report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented.

General information

State: Published
Organisations: Department of Informatics and Mathematical Modeling, Logistics & ITS, Department of Transport, Operations Research, British Airways, Carmen System A.B.
Authors: Kohl, N. (Intern), Larsen, A. (Intern), Larsen, J. (Intern), Ross, A. (Ekstern), Tiourine, S. (Ekstern)
Pages: 149-162
Publication date: May 2007
Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of Air Transport Management
Volume: 13
Issue number: 3
ISSN (Print): 0969-6997
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.979 SNIP 1.467 CiteScore 2.61
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.875 SNIP 1.134 CiteScore 1.41
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.841 SNIP 1.348 CiteScore 1.31
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.832 SNIP 1.02 CiteScore 1.22
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.887 SNIP 1.377 CiteScore 1.19
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.724 SNIP 1.428 CiteScore 1.35
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.919 SNIP 1.687
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.685 SNIP 1.45
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.683 SNIP 1.361
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.564 SNIP 0.931
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.591 SNIP 1.215
Scopus rating (2005): SJR 0.466 SNIP 1.309
Scopus rating (2004): SJR 0.567 SNIP 1.134
Scopus rating (2003): SJR 0.534 SNIP 0.851
Scopus rating (2002): SJR 0.311 SNIP 1.012
Scopus rating (2001): SJR 0.23 SNIP 0.496
Scopus rating (2000): SJR 0.293 SNIP 0.823
Classification of Dynamic Vehicle Routing Systems
This chapter discusses important characteristics seen within dynamic vehicle routing problems. We discuss the differences between the traditional static vehicle routing problems and its dynamic counterparts. We give an in-depth introduction to the degree of dynamism measure which can be used to classify dynamic vehicle routing systems. Methods for evaluation of the performance of algorithms that solve on-line routing problems are discussed and we list some of the most important issues to include in the system objective. Finally, we provide a three-echelon classification of dynamic vehicle routing systems based on their degree of dynamism and the system objective.

Dynamic Airline Scheduling: An Analysis of the Potentials of Reflecting and Retiming
We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit increase for a major European airline. The results also indicate that applying DAS close to departure yields the largest potential.
Analysis and Comparison of Typical Models within Distribution Network Design

Efficient and cost effective transportation and logistics plays a vital role in the supply chains of the modern world’s manufacturers. Global distribution of goods is a very complicated matter as it involves many different distinct planning problems. The focus of this presentation is to demonstrate a number of important issues which have been identified when addressing the Distribution Network Design problem from a modelling angle. More specifically, we present an analysis of the research which has been performed in utilizing operational research in developing and optimising distribution systems.

General information
State: Published
Organisations: Traffic Modelling, Department of Transport, Logistics & ITS
Authors: Jørgensen, H. J. (Intern), Larsen, A. (Intern), Madsen, O. B. (Intern)
Number of pages: 4
Publication date: 2006
Main Research Area: Technical/natural sciences
Electronic versions: SCM_paper_Odysseus_140306.pdf
Source: orbit
Source-ID: 195488
Publication: Research - peer-review › Paper – Annual report year: 2006

Analysis and Comparison of Typical Models within Distribution Network Design

This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models on a tabular form is introduced. The analysis provides a framework for a categorisation of models based on their structure. The models which are analyzed cover both strategic as well as tactical planning issues, as the categorisation framework seeks to avoid making this distinction. The features which are covered in the categorisation include fixed vs. general networks, specialised vs. general nodes, linear vs. nonlinear costs, single vs. multi commodity, uncapacitated vs. capacitated activities, single vs. multi modal and static vs. dynamic. The models examined address both strategic and tactical planning issues but do include considerations on the operational level. The paper should prove to be useful to both theoretically well-founded and experienced readers as well as to inexperienced readers as it provides a broad but easy accessible literature survey. This also makes this paper ideal for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model.

General information
State: Published
Organisations: Department of Transport
Authors: Jørgensen, H. J. (Intern), Larsen, A. (Intern), Madsen, O. B. (Intern)
Publication date: 2006

Publication information
Publisher: Technical University of Denmark, Centre for Traffic and Transport
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 210400
Publication: Research › Report – Annual report year: 2006

Disruption Management in the Airline Industry - Concepts, Models and Methods

General information
State: Published
Airline Disruption Management - Perspectives, Experiences and Outlook

Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused by for example severe weather, technical problems and crew sickness. Thus, the field of Airline Disruption Management has emerged within the past few years. The increased focus on cutting cost at the major airlines has intensified the interest in the development of new and cost efficient methods to handle airline disruptions. The purpose of this paper is twofold. In the first part it offers an introduction to airline disruption management, provides the readers with a description of the planning processes and delivers a detailed overview of the numerous aspects of airline disruption management. In the second part we report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented.

Modelling and Solving the International Freight Service Network Timetabling Problem (IFSENT)

Modelling and Solving the International Freight Service Network Timetabling Problem (IFSENT)
The A-priori Dynamic Traveling Salesman Problem with Time Windows

In this paper we examine the traveling salesman problem with time windows for various degrees of dynamism. In contrast to the static problem, where the dispatcher can plan ahead, in the dynamic version, part or all of the necessary information becomes available only during the day of operation. We seek to minimize lateness and examine the impact of this criterion choice on the distance traveled. Our focus on lateness is motivated by the problem faced by overnight mail service providers. We propose a real-time solution method that requires the vehicle, when idle, to wait at the current customer location until it can service another customer without being early. In addition, we develop several enhanced versions of this method that may reposition the vehicle at a location different from that of the current customer based on a priori information on future requests. The results we obtained on both randomly generated data and on a real-world case study indicate that all policies proved capable of significantly reducing lateness. Our results also show that this can be accomplished with only small distance increases. The basic policy outperformed the other methods primarily when lateness and distance were equally minimized and proved very robust in all environments studied. When only lateness was considered, the policy to reposition the vehicle at a location near the current customer generally provided the largest reductions in average lateness and the number of late customers. It also produced the least extra distance to be traveled among the relocation policies.

The A-priori Traveling Salesman Problem with Time Windows

In this paper we examine the traveling salesman problem with time windows for various degrees of dynamism. In contrast to the static problem, where the dispatcher can plan ahead, in the dynamic version, part or all of the necessary information becomes available only during the day of operation. We seek to minimize lateness and examine the impact of this criterion choice on the distance traveled. Our focus on lateness is motivated by the problem faced by overnight mail service providers. We propose a real-time solution method that requires the vehicle, when idle, to wait at the current customer location until it can service another customer without being early. In addition, we develop several enhanced versions of this method that may reposition the vehicle at a location different from that of the current customer based on a priori information on future requests. The results we obtained on both randomly generated data and on a real-world case study indicate that all policies proved capable of significantly reducing lateness. Our results also show that this can be accomplished with only small distance increases. The basic policy outperformed the other methods primarily when lateness and distance were equally minimized and proved very robust in all environments studied. When only lateness was considered, the policy to reposition the vehicle at a location near the current customer generally provided the largest reductions in average lateness and the number of late customers. It also produced the least extra distance to be traveled among the relocation policies.
The a-priory dynamic traveling salesman problem with time windows

General information
State: Published
Organisations: Logistics & ITS, Department of Transport, Department of Informatics and Mathematical Modeling, Northeastern University
Authors: Madsen, O. B. (Intern), Larsen, A. (Intern), Solomon, M. M. (Ekstern)
Pages: 459-472
Publication date: 2004
Main Research Area: Technical/natural sciences

Publication information
Journal: Transportation Science
Volume: 38
The A-priori Dynamic Traveling Salesman Problem with Time Windows

General information
State: Published
Organisations: Logistics & ITS, Department of Transport, Northeastern University
Authors: Larsen, A. (Intern), Madsen, O. G. (Intern), Solomon, M. (Ekstern)

Publication: Research - peer-review › Journal article – Annual report year: 2004
Partially dynamic vehicle routing - models and algorithms

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. (Intern), Solomon, M. (Ekstern)
Pages: 637-646
Publication date: 2002
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of the Operational Research Society
Volume: 53
Issue number: 6
Original language: English
Links:
Source: orbit
Source-ID: 58095
Publication: Research - peer-review › Journal article – Annual report year: 2002

Staff Scheduling within the Retail Business in Denmark

General information
State: Published
Authors: Leedgaard, J. (Ekstern), Mortensen, K. H. (Ekstern), Larsen, A. (Intern), Larsen, J. (Intern)
Publication date: 2002

Host publication information
Title of host publication: Proceedings of Nordic MPS 2002
Main Research Area: Technical/natural sciences
Conference: Nordic MPS ’02, Bergen, Norway, 01/01/2002
Links:

Bibliographical note
ISSN 0333-3590
Source: orbit
Source-ID: 58242
Publication: Research › Article in proceedings – Annual report year: 2002

Disruption management

General information
State: Published
Organisations: Operations Research, Department of Informatics and Mathematical Modeling, Department of Transport
Authors: Clausen, J. (Intern), Hansen, J. (Intern), Larsen, J. (Intern), Larsen, A. (Intern)
Pages: 40-43
Partially Dynamic Vehicle Routing-Models and Algorithms

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. G. (Intern), Solomon, M. M. (Ekstern)
Publication date: 1999

Publication information
Original language: English
Main Research Area: Technical/natural sciences
Links:
http://www.ala.imm.dtu
Source: orbit
Source-ID: 172868
Publication: Research - peer-review › Report – Annual report year: 1999

The A-Priori Dynamic Travelling Salesman Problem with Time Windows

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling, Northeastern University
Authors: Madsen, O. B. G. (Intern), Larsen, A. (Intern), Solomon, M. (Ekstern)
Number of pages: 25
Publication date: 1999

Publication information
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 172682
Publication: Research - peer-review › Report – Annual report year: 1999

Dynamic Vehicle Routing - An Overview of Systems with Varying Degree of Dynamism

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Madsen, O. B. G. (Intern), Larsen, A. (Intern)
Publication date: 1998

Host publication information
Title of host publication: Proceeding of Tristan III
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 172681
Publication: Research - peer-review › Article in proceedings – Annual report year: 1998

Solving the multiple depot vehicle scheduling problem in a major Scandinavian city

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. G. (Intern)
Number of pages: 18
Publication date: 1997

Publication information
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 168623
Publication: Research - peer-review › Report – Annual report year: 1997
Solving the multiple depot vehicle scheduling problem in a major Scandinavian city

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. G. (Intern)
Pages: 289-306
Publication date: 1997

Host publication information
Title of host publication: Proceedings of NOAS'97
Place of publication: Copenhagen
Publisher: Department of Computer Science, University of Copenhagen (DIKU)
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 168737
Publication: Research - peer-review › Article in proceedings – Annual report year: 1997

An Evaluation of the Strategy for Calling in Vehicles for Inspection.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. G. (Intern), Rygaard, J. M. (Intern)
Number of pages: 40
Publication date: 1996

Publication information
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 164791
Publication: Research - peer-review › Report – Annual report year: 1996

Computer based crew rostering (in Danish).

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Larsen, A. (Intern), Madsen, O. B. G. (Intern)
Publication date: 1996

Publication information
Original language: Danish
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 164796
Publication: Research - peer-review › Report – Annual report year: 1996

Projects:

Machine Learning and Mobility
Department of Management Engineering
Period: 15/12/2015 → 14/12/2018
Number of participants: 3
Phd Student:
Markou, Ioulia (Intern)
Supervisor:
Larsen, Allan (Intern)
Main Supervisor:
Pereira, Francisco Camara (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)
Project: PhD

Optimization of operations in public transportation
Department of Management Engineering
Period: 01/10/2015 → 30/09/2018
Number of participants: 4
Phd Student:
Farina, Federico (Intern)
Supervisor:
Larsen, Allan (Intern)
Roberti, Roberto (Intern)
Main Supervisor:
Røpke, Stefan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD

Optimization of timetables in integrated public transport planning
Department of Management Engineering
Period: 01/10/2015 → 30/09/2018
Number of participants: 4
Phd Student:
Fonseca, Joao Filipe Paiva (Intern)
Supervisor:
Roberti, Roberto (Intern)
Røpke, Stefan (Intern)
Main Supervisor:
Larsen, Allan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD

Cargo-mix optimisation
Department of Management Engineering
Period: 01/09/2014 → 26/10/2017
Number of participants: 6
Phd Student:
Christensen, Jonas Mark (Intern)
Supervisor:
Psaraftis, Harilaos N. (Intern)
Main Supervisor:
Pacino, Dario (Intern)
Examiner:
Larsen, Allan (Intern)
Alvarez-Valdés, Ramón (Ekstern)
Andersson, Henrik (Ekstern)

Financing sources
Green corridors in freight logistics

Department of Management Engineering
Number of participants: 6
Phd Student:
Panagakos, George (Intern)
Supervisor:
Larsen, Allan (Intern)
Main Supervisor:
Psaraftis, Harilaos N. (Intern)
Examiner:
Rich, Jeppe (Intern)
Cullinane, Kevin (Ekstern)
Ojala, Lauri (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Forskningsrådsfinansiering
Project: PhD

Efficient Algorithms for integrated Container Terminal Activities

Department of Transport
Period: 01/02/2013 → 04/07/2016
Number of participants: 7
Phd Student:
Iris, Cagatay (Intern)
Supervisor:
Pacino, Dario (Intern)
Røpke, Stefan (Intern)
Main Supervisor:
Larsen, Allan (Intern)
Examiner:
Psaraftis, Harilaos N. (Intern)
Meisel, Frank (Ekstern)
Vis, Iris F. A. (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD

The Framework of phase-based planning of railway

Department of Management Engineering
Period: 15/01/2013 → 21/09/2017
Number of participants: 8
Phd Student:
Li, Rui (Intern)
Supervisor:
Landex, Alex (Intern)
Landex, Alex (Intern)
Salling, Kim Bang (Intern)
Main Supervisor:
Larsen, Allan (Intern)
ConCoord
The project focuses on the important area of city logistics. It investigates an integrated urban freight simulation environment, a unique measurement framework for the environmental footprint of transport and logistics, and the performance measurement of new innovative urban transport and logistics concepts. Specifically dealing with the different and important considerations of new transportation solutions, new mechanisms for execution and control of city logistics, and research on the urban distribution of goods reducing urban freight movements and its impact on residents and the environment.

The fundamental idea is to stop considering each shipment, actor (e.g. shippers, Logistics Service Providers, etc.) and vehicle in isolation, but as components of an integrated logistics system to be optimized. The keywords are CONsolidation and COORDination (CONCOORD) of the urban distribution flows that are currently fragmented. CONCOORD involves key players in the urban transportation field, both from leading European universities and world-class Europe-based companies, who have expertise and experience in city distribution and who have the willingness to explore this issue for the benefit of all those in Europe.

Department of Transport
Transport optimisation and technique
Period: 01/01/2013 → 01/06/2016
Number of participants: 5
Acronym: ConCoord
Project participant:
Larsen, Rune (Intern)
Wen, Min (Intern)

Project Manager, organisational:
Olsen, Allan (Intern)

Project Manager, academic:
Psaraftis, Harilaos N. (Intern)

Project applicant:
Larsen, Allan (Intern)

Network Effects within Railway Networks
GreCOR – Green Corridor in the North Sea Region – is an Interreg IVB North Sea Region project that started the 1st of January 2012. GreCOR will promote the development of a co-modal transport corridor in the North Sea Region. Important in this collaborative approach, is the focus on secondary networks and the hubs, and the regional hinterland around the Green transport corridor Oslo-Randstad from a co-modal perspective.

GreCOR has 14 partners and a total budget of 3.7 M€. It started the 1 January 2012 and will be finalized 31 December 2014. The Swedish Transport Administration is the responsible lead partner for GreCOR.

GreCOR works in close collaboration with public and private stakeholders, and its overall aim is to improve knowledge about the logistic needs and conditions and develop and implement the first green corridor in the North Sea Region in a strategic policy setting.

The main idea of the project is to influence the green corridor consisting of infrastructure and transport development in the area. Furthermore, GreCOR aims to:
- Improve knowledge about the logistics needs and conditions in the corridor
- Test innovative logistics solutions through the development of pilot projects
- Promote the development of sustainable transport in the North Sea Region
- Focus on the role of the hubs and the regional hinterland
- Understand and develop the logistics utility creation in a green corridor taking a co-modal perspective.
- One very important tool for reaching the goals of corridor development is a liaison group to which we invite all relevant organizations, stakeholders and companies to join.
Rasmussen, Thomas Kjær (Intern)
Supervisor:
Frederiksen, Rasmus Dyhr (Intern)
Prato, Carlo Giacomo (Intern)
Main Supervisor:
Nielsen, Otto Anker (Intern)
Examiner:
Larsen, Allan (Intern)
Bekhar, Shlomo (Ekstern)
Cantarella, Giulio Erberto (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU) Samf.
Project: PhD

Optimal Aircraft Gate Assignment on a Strategic, Tactical and Operational Level
Department of Management Engineering
Period: 01/10/2010 → 26/05/2014
Number of participants: 7
Phd Student:
Justesen, Tor Fog (Intern)
Supervisor:
Dohn, Anders Høeg (Intern)
Meincke, Dan (Ekstern)
Main Supervisor:
Larsen, Jesper (Intern)
Examiner:
Larsen, Allan (Intern)
Cohn, Amy Ellen Mainville (Ekstern)
Vaaben, Bo Valdemar (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: ErhvervsPhD-ordningen VTU
Project: PhD

Effektive løsningsmetoder til real-tids distributionssystemer
Department of Transport
Period: 01/05/2010 → 31/03/2011
Number of participants: 3
Phd Student:
Buhrkal, Katja Frederik (Intern)
Supervisor:
Rapke, Stefan (Intern)
Main Supervisor:
Larsen, Allan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU) Samf.
Project: PhD

Sustainable Disruption Management
Department of Management Engineering
Period: 01/11/2009 → 04/04/2013
Number of participants: 7
Phd Student:
Vaaben, Bo Valdemar (Intern)
Supervisor:
Altus, Stephen (Ekstern)
Hansen, Jesper (Intern)
Main Supervisor:
Larsen, Jesper (Intern)
Examiner:
Larsen, Allan (Intern)
Cohn, Amy E. M. (Ekstern)
Granberg, Tobias A. (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: ErhvervsPhD-ordningen VTU
Project: PhD

Cable Aerodynamic Control
Department of Civil Engineering
Period: 01/10/2009 → 27/08/2013
Number of participants: 6
Phd Student:
Kleissl, Kenneth (Intern)
Supervisor:
Koss, Holger (Intern)
Main Supervisor:
Georgakis, Christos T. (Intern)
Examiner:
Fischer, Gregor (Intern)
Larose, Guy (Intern)
Larsen, Allan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)
Project: PhD

Effektive løsningsmetoder til real-tids distributjonsystemer
Department of Transport
Period: 01/10/2008 → 30/11/2009
Number of participants: 3
Phd Student:
Kristiansen, Helene Martine Overø (Intern)
Supervisor:
Rejke, Stefan (Intern)
Main Supervisor:
Larsen, Allan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU) Samf.
Project: PhD

Solving Recovery Problems using Optimisations Methods
Department of Management Engineering
Period: 01/05/2008 → 28/09/2011
Number of participants: 6
Phd Student:
Rasmussen, Matias Sevel (Intern)
Models and Algorithms for the Vehicle Routing Problem with Cross Docking

Department of Management Engineering
Period: 01/02/2006 → 24/03/2010
Number of participants: 6
Phd Student:
Wen, Min (Intern)
Supervisor:
Clausen, Jens (Intern)
Main Supervisor:
Larsen, Jesper (Intern)
Examiner:
Larsen, Allan (Intern)
Gustafsson, Tomas (Ekstern)
Rönnqvist, Mikael (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)
Project: PhD

Simultaneous Optimisation of Operating Costs and Passenger Service in Public Transit

In the Greater Copenhagen area approximately 200.000 hours are lost every day when passengers are waiting for a connecting bus or train. Hence, an enormous socio-economic potential lies within the development of new methods that can be used to generate timetables which have better temporal correspondences. Naturally, this can be achieved by assigning more resources to cover the timetables. However, the public transit companies are faced with administrative claims for cutting operating costs which renders improvements of the service intractable. Hence, efficient and near-optimal use of the resources is of paramount importance for the public transit companies.

The project addresses the multiple objective planning problem of generating timetables that on the one side is economically feasible for the transport companies and on the other hand also offers high-quality service to the passengers by minimising the unproductive time spent on waiting between one or more shifts.

Department of Transport
Period: 01/09/2005 → 31/05/2008
Number of participants: 4
Project participant:
Larsen, Allan (Intern)
Pedersen, Michael Berliner (Intern)
Petersen, Bjørn (Intern)

Project Manager, organisational:
Madsen, Oli B.G. (Intern)

Financing sources
Source: Forskningsrådene - Andre
Name of research programme: Forskningsrådene - Andre
Amount: 840,000.00 Danish Kroner
Project
Traffic Plan for Greenland: Decision Support Tool TGB

Department of Transport
Period: 06/06/2005 → 31/12/2005
Number of participants: 8
Acronym: TGB
Project ID: 35105
Project participant:
Jensen, Anders Vestergaard (Intern)
Salling, Kim Bang (Intern)
Nielsen, Otto Anker (Intern)
Hansen, Stephen (Intern)
Larsen, Allan (Intern)
Knudsen, Mette Aagaard (Intern)
Project Manager, organisational:
Leleur, Steen (Intern)
Rich, Jeppe (Intern)

Financing sources
Source: Indtægtsdækket virksomhed UK 90
Name of research programme: Indtægtsdækket virksomhed UK 90
Amount: 1,500,000.00 Danish Kroner

Centre for Logistics and Freight Transport
The Centre for Logistics and Freight Transport (CLG) is a multi-disciplinary research centre on logistics and freight transport. The Centre is headed by CTT. CLG is a cooperation between a number of Danish and international universities and companies. CLG is funded by The Danish Technical Research Council (STVF). The objective of the Centre is to strengthen the Danish research on logistics and transport. This is achieved through specific research projects and through networking activities within the center. A number of the research projects are multi-disciplinary. The scope of the Centre is to obtain an increased knowledge about the various stakeholders within the logistics and transport sector and to develop new methods and concepts which are applicable to the stakeholders. This includes organisatorial and management concepts as well as methods based on mathematical models in order to support the various stakeholders which briefly can be characterized as follows: Manufacturers and consumers of goods (transport users). Transporters (operators, forwarders, etc.). Transport infrastructure owner (public authorities, ports, airports, etc.). Public authorities (political means and control). National economics (derivated effects of the transport system and the external influences).

Department of Transport
Period: 25/06/2001 → 31/12/2006
Number of participants: 13
Acronym: CLG
Project ID: 421-35044
Project participant:
Madsen, Oli B.G. (Intern)
Leleur, Steen (Intern)
Overgård, Christian Hansen (Intern)
Rich, Jeppe (Intern)
Jørgensen, Rene Munk (Intern)
Larsen, Allan (Intern)
Pedersen, Michael Berliner (Intern)
Salling, Kim Bang (Intern)
Jensen, Anders Vestergaard (Intern)
Sørensen, Majken Vildrik (Intern)
Landex, Alex (Intern)
Holvad, Torben (Intern)
Project Manager, organisational:
Nielsen, Otto Anker (Intern)

Financing sources
The dynamic vehicle routing problem

Department of Transport
Period: 01/01/1997 → 17/04/2001
Number of participants: 5
Phd Student:
Larsen, Allan (Intern)
Main Supervisor:
Madsen, Oli B.G. (Intern)
Examiner:
Clausen, Jens (Intern)
Gendreau, Michel (Ekstern)
Pisinger, David (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Anden Sektorministeriel Fin-SU
Project: PhD

Crew and vehicle scheduling.
The objective of the project is to develop methods for finding the optimal or near optimal scheduling of crews and vehicles. Rules concerning e.g. working periods and union regulations have to be taken into consideration. In 1996 a system ACROS has been developed for computer based crew rostering, in particular applicable for medium term planning for allocation of bus drivers. ACROS was developed in cooperation with the company TR-Partners. Furthermore a system concerning the scheduling of duties for nurses has been developed. The system is based on set partitioning and constrained branch and bound, and it was developed in cooperation with Hovedstadens Sygehussselskab and Andersen Consulting.

Department of Informatics and Mathematical Modeling
TR Partner
Period: 01/01/1996 → 31/12/1998
Number of participants: 2
Project participant:
Larsen, Allan (Intern)
Project Manager, organisational:
Madsen, Oli B.G. (Intern)

Financing sources
Source: Unknown
Name of research programme: Ukendt
Amount: 100,000.00 Danish Kroner
Project

Calling in vehicles for inspection.
In 1998 and the following years all cars which are more than three years old must be inspected by the Danish Car Inspection (Statens Bilinspektion) every second year. Therefore the Danish Car Inspection needed to know how, when and where should the cars be called in for inspection and which capacity was necessary. To answer these questions we developed a large aggregated optimization model. The results from the model was used by the management of the Danish Car Inspection to make decisions concerning the overall structure of the future process for car inspection.

Department of Informatics and Mathematical Modeling
Statens Bilinspektion
Period: 01/11/1995 → 31/05/1996
Number of participants: 3
Project participant:
Larsen, Allan (Intern)
Dynamic vehicle routing.
Dynamic vehicle routing is dealing with vehicle routing problems in which not all information is available at the start of the planning period. Vehicles are dispatched to satisfy service requests, that evolve in real time. In 1996 a simulator was developed. The simulator generated problem instances which were solved by a static algorithm. The purpose was to analyze how the degree of dynamism influenced the quality of the static solution procedure. Furthermore an algorithm has been developed for dispatching medical doctors serving patients in their homes at night. The algorithm was combined with a very fast shortest route algorithm and a road network database.

Department of Informatics and Mathematical Modeling

COWI A/S
Period: 01/09/1994 → …
Number of participants: 4
Project participant:
Rygaard, Jens Moberg (Intern)
Lund, Karsten (Intern)
Larsen, Allan (Intern)

Project Manager, organisational:
Madsen, Oli B.G. (Intern)

Financing sources
Source: Unknown
Name of research programme: Ukendt
Amount: 105,000.00 Danish Kroner
Project