Extraction, enrichment, and in situ electrochemical detection on lab-on-a-disc; monitoring the production of a bacterial secondary metabolite

Development of microsystems, which enable ‘sample-to-answer’ detection from real samples, is often challenging. We present the first integration of supported liquid membrane extraction combined with electrochemical detection on a centrifugal fluidic platform. The developed lab-on-a-disc (LoD) system enabled the separation, enrichment and subsequent electrochemical detection of the target analyte from a complex sample mixture. As a case study, we quantified the amount of a dietary supplement and pharmaceutical precursor, p-Coumaric acid, from bacterial growth media at different time points during production. The assay, extraction, and detection, performed on the LoD device, proved to be a low cost and environmentally friendly approach, requiring only a few tens of µL organic solvent and enabled detection in 3 µL volume. In addition, the data obtained from the centrifugal platform showed a good correlation with data obtained from high performance liquid chromatography analysis.
Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech

This mini-review provides a perspective of traditional, emerging, and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for understanding mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design-Build-Test-Learn workflow cycle for LAB cell factory development based on systems biology, with “cell factory” expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.08 SJR 1.156 SNIP 0.756
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.17 SJR 1.136 SNIP 0.767
Web of Science (2014): Impact factor 13.244
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.25 SJR 1.053 SNIP 0.719
Web of Science (2013): Impact factor 13.806
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.25 SJR 1.073 SNIP 0.804
Web of Science (2012): Impact factor 13.231
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.26 SJR 1.105 SNIP 0.764
Web of Science (2011): Impact factor 10.96
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.081 SNIP 0.754
Web of Science (2010): Impact factor 11.796
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.13 SNIP 0.834
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.084 SNIP 0.834
Scopus rating (2007): SJR 1.103 SNIP 0.864
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.105 SNIP 0.86
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1 SNIP 0.8
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.005 SNIP 0.725
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.018 SNIP 0.866
Scopus rating (2002): SJR 0.902 SNIP 0.791
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.944 SNIP 0.752
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.936 SNIP 0.739
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.979 SNIP 0.748

Original language: English
Keywords: Genetic tool development, Food fermentation, Biotherapeutics, Phytotherapeutics, Synthetic biology, GMO
Electronic versions:
fny291_1_.pdf
DOIs:
10.1093/femsle/fny291
Simultaneous quantification of multiple bacterial metabolites using surface-enhanced Raman scattering

Given the commercial importance of the compounds produced by genetically modified organisms, there is a need for screening methods which facilitate the evaluation of newly developed strains, especially during the phase of proof-of-concept development. We report a time-efficient analysis method for the screening of bacterial strains, which enables the detection of two structurally similar secondary bacterial metabolites. By combining liquid-liquid extraction and surface-enhanced Raman scattering we were able to quantify p-coumaric acid and cinnamic acid, produced by genetically modified \textit{E. coli} from tyrosine and phenylalanine, respectively. With the simple sample pre-treatment method, and by applying a partial least squares data analysis method, we simultaneously detected the analytes from four \textit{E. coli} strains cultured in the presence or absence of tyrosine and phenylalanine.
A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

In vitro selection of aptamers that recognize small organic molecules has proven difficult, in part due to the challenge of immobilizing small molecules on solid supports for SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This study describes the implementation of RNA Capture-SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic acid. In addition, Bio-layer interferometry is used to screen clonal libraries of aptamer candidates and is used to interrogate aptamer affinity. The RNA-based Capture-SELEX strategy described here simplifies selection of RNA aptamers against small molecules by avoiding ligand immobilization, while also allowing selection against multiple candidate targets in a single experiment. This makes RNA Capture-SELEX particularly attractive for accelerated development of RNA aptamers targeting small metabolites for incorporation into synthetic riboswitches and for analytical biosensors.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Bacterial Cell Factories, Research Groups
Pages: 291-306
Publication date: 2018

Host publication information
Title of host publication: Synthetic Metabolic Pathways
Volume: 1671
ISBN (Print): 978-1-4939-7294-4
ISBN (Electronic): 978-1-4939-7295-1
(Methods in Molecular Biology).
Keywords: Bio-layer interferometry, Next-generation sequencing, RNA aptamer, SELEX, Small molecules
DOIs:
10.1007/978-1-4939-7295-1_18
Source: FindIt
Source-ID: 2393668053
Research output: Research - peer-review › Book chapter – Annual report year: 2018

Bacterial cells with improved tolerance to diacids
The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diacids, and to methods of preparing and using such bacterial cells for production of diacids and other
Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interest. The underlying molecular biology is based on the two cross-kingdom tools CRISPRi and the N-end rule for protein degradation. Genome editing is performed with the CRMAGE technology and randomization of the translational initiation region minimizes the polar effects of tag insertion. The approach has previously been applied for targeting proteins originating from essential operon-located genes and has potential to serve as a universal synthetic biology tool.

Genome-wide identification of tolerance mechanisms towards p-coumaric acid in Pseudomonas putida

The soil bacterium Pseudomonas putida KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of P. putida KT2440 towards eleven toxic chemical compounds was investigated. P. putida was found to be significantly more tolerant towards three of the eleven compounds when compared to Escherichia coli. Increased tolerance was for example found towards p-coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome-wide approach, Tn-seq. Libraries containing a large number of miniTn5-Km transposon insertion mutants were grown in the presence and absence of p-coumaric acid, and the enrichment or depletion of mutants was quantified by high-throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome c maturation system (ccm), were identified to play an important role in the tolerance towards p-coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance towards p-coumaric acid is related to transport and membrane integrity. This article is protected by copyright. All rights reserved.
Injection molded lab-on-a-disc platform for screening of genetically modified E. coli using liquid-liquid extraction and surface enhanced Raman scattering

We present the development of an automated centrifugal microfluidic platform with integrated sample pre-treatment (filtration and liquid-liquid extraction) and detection (SERS-based sensing). The platform consists of eight calibration and four assay modules, fabricated with polypropylene using injection molding and bonded with ultrasonic welding. The platform was used for detection of a secondary bacterial metabolite (p-coumaric acid) from bacterial supernatant. The obtained extraction efficiency was comparable to values obtained in batch experiments and the SERS-based sensing showed a good correlation with HPLC analysis.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Polytechnic University of Turin
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Lab on a Chip
ISSN (Print): 1473-0197
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.05 SJR 2.158 SNIP 1.586
Web of Science (2017): Impact factor 5.995
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.98 SJR 2.162 SNIP 1.569
Web of Science (2016): Impact factor 6.045
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.74 SJR 2.239 SNIP 1.721
Web of Science (2015): Impact factor 5.586
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.6 SJR 2.555 SNIP 1.797
Web of Science (2014): Impact factor 6.115
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.9 SJR 2.397 SNIP 1.693
Web of Science (2013): Impact factor 5.748
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.35 SJR 2.405 SNIP 1.731
Web of Science (2012): Impact factor 5.697
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.76 SJR 2.54 SNIP 1.788
Web of Science (2011): Impact factor 5.67
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.718 SNIP 1.876
Web of Science (2010): Impact factor 6.26
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.673 SNIP 2.164
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.833 SNIP 1.849
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.441 SNIP 1.827
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.564 SNIP 1.61
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.52 SNIP 1.428
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.962 SNIP 1.823
Web of Science (2004): Indexed yes
Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides

The present invention generally relates to industrial microbiology, and specifically to the production of biochemical compounds, such as L-serine, L-tyrosine, mevalonate and their derivatives, and recombinant polypeptides using genetically modified microorganisms. More particularly, the present invention pertains to the decoupling of cell growth from production of biochemical compounds, such as L-serine, L-tyrosine, mevalonate and their derivatives, in a microorganism by down regulating the nucleotide biosynthesis in said microorganism.

Multiplex Genome Editing in Escherichia coli

Lambda Red recombineering is an easy and efficient method for generating genetic modifications in Escherichia coli. For gene deletions, lambda Red recombineering is combined with the use of selectable markers, which are removed through the action of, e.g., flippase (Flp) recombinase. This PCR-based engineering method has also been applied to a number of other bacteria. In this chapter, we describe a recently developed one plasmid-based method as well as the use of a strain with genomically integrated recombineering genes, which significantly speeds up the engineering of strains with multiple genomic alterations.
Towards Improved Biophysical Calculations to Identify Disease-Causing Mutations

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Bacterial Cell Factory Optimization, University of Copenhagen
Contributors: Lindorff-Larsen, K., Stein, A., Teilum, K., Nielsen, A. T., Hartmann-Petersen, R.
Pages: 199a
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Biophysical Journal
Volume: 114
Issue number: 3, Suppl 1
Article number: 1005-Plat
ISSN (Print): 0006-3495
Ratings:
 BFI (2019): BFI-level 1
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 3.15 SJR 1.949 SNIP 0.979
 Web of Science (2017): Impact factor 3.495
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 3.06 SJR 1.988 SNIP 1.005
 Web of Science (2016): Impact factor 3.656
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 3.3 SJR 2.13 SNIP 1.134
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 3.33 SJR 2.21 SNIP 1.15
 Web of Science (2014): Impact factor 3.972
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 3.64 SJR 2.245 SNIP 1.156
 Web of Science (2013): Impact factor 3.832
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 3.57 SJR 2.361 SNIP 1.143
 Web of Science (2012): Impact factor 3.668
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 3.75 SJR 2.357 SNIP 1.202
 Web of Science (2011): Impact factor 3.653
 ISI indexed (2011): ISI indexed yes
 Web of Science (2011): Indexed yes
Bacterial cells with improved tolerance to isobutyric acid

Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, iLoop, Bacterial Cell Factory Optimization, Global Econometric Modeling, Department of Biotechnology and Biomedicine, Bacterial Synthetic Biology, ALE Technology & Software Development
Contributors: Lennen, R., Nielsen, A. T., Herrgård, M., Sommer, M. O. A., Feist, A., Mohamed, E. T. T.
Publication date: 16 Nov 2017

Publication information
IPC: C12P 7/52 A1
Patent number: WO2017194696
Date: 16/11/2017
Priority date: 09/06/2016
Priority number: EP20160173673
Original language: English
Source: espacenet
Source-ID: WO2017194696
Research output: Research › Patent – Annual report year: 2017
Improved biological processes for the production of aryl sulfates
The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Jendresen, C. B., Nielsen, A. T.
Publication date: 31 Aug 2017

Publication information
IPC: C12P 5/00 A I
Patent number: WO2017144671
Date: 31/08/2017
Priority date: 24/02/2016
Priority number: EP20160157231
Original language: English
Electronic versions:
WO2017144671A1.pdf
Source: espacenet
Source-ID: WO2017144671
Research output: Research › Patent – Annual report year: 2017

Improved process for producing a fermentation product from a lignocellulose-containing material
The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose-containing material by sulfating the phenolic inhibitors and toxins using aryl sulfotransferase (EC 2.8.2.1) and sulfate transporter.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Jendresen, C. B., Nielsen, A. T.
Publication date: 31 Aug 2017

Publication information
IPC: C12P 11/00 A I
Patent number: WO2017144670
Date: 31/08/2017
Priority date: 24/02/2016
Priority number: EP20160157232
Original language: English
Electronic versions:
WO2017144670A1.pdf
Source: espacenet
Source-ID: WO2017144670
Research output: Research › Patent – Annual report year: 2017

Bacterial cells with improved tolerance to polyols
The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, iLoop, Bacterial Cell Factory Optimization, Global Econometric Modeling, Department of Biotechnology and Biomedicine, Bacterial Synthetic Biology,
Bacterial cells with improved tolerance to polyamines

Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, iLoop, Bacterial Cell Factory Optimization, Global Econometric Modeling, Department of Biotechnology and Biomedicine, Bacterial Synthetic Biology, ALE Technology & Software Development
Contributors: Lennen, R., Nielsen, A. T., Herrgard, M., Sommer, M. O. A., Feist, A., Tharwat Tolba Mohamed, E.
Publication date: 15 Jun 2017
Publication information
IPC: C12P 13/00 A1
Patent number: WO2017097828
Date: 15/06/2017
Priority date: 09/02/2016
Priority number: EP20160154829
Original language: English
Electronic versions:
WO2017097828A1.pdf
Source: espacenet
Source-ID: WO2017097828
Research output: Research › Patent – Annual report year: 2017

Application of the thermostable β-galactosidase, BgaB, from Geobacillus stearothermophilus as a versatile reporter under anaerobic and aerobic conditions: Alternative title; Application of the thermostable beta-galactosidase, BgaB, from Geobacillus stearothermophilus as a versatile reporter under anaerobic and aerobic conditions

Use of thermophilic organisms has a range of advantages, but the significant lack of engineering tools limits their applications. Here we show that β-galactosidase from Geobacillus stearothermophilus (BgaB) can be applicable in a range of conditions, including different temperatures and oxygen concentrations. This protein functions both as a marker, promoting colony color development in the presence of a lactose analogue S-gal, and as a reporter enabling quantitative measurement by a simple colorimetric assay. Optimal performance was observed at 70 °C and pH 6.4. The gene was introduced into G. thermoglucosidans. The combination of BgaB expressed from promoters of varying strength with S-gal produced distinct black colonies in aerobic and anaerobic conditions at temperatures ranging from 37 to 60 °C. It showed an important advantage over the conventional β-galactosidase (LacZ) and substrate X-gal, which were inactive at high temperature and under anaerobic conditions. To demonstrate the versatility of the reporter, a promoter library was constructed by randomizing sequences around −35 and −10 regions in a wild type groES promoter from Geobacillus sp. GHH01. The library contained 28 promoter variants and encompassed fivefold variation. The experimental pipeline allowed construction and measurement of expression levels of the library in just 4 days. This β-galactosidase provides a promising tool for engineering of aerobic, anaerobic, and thermophilic production organisms such as Geobacillus species.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Department of Biotechnology and Biomedicine, Bacterial Synthetic Biology, Research Groups
CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability

Interference with genes is the foundation of reverse genetics and is key to manipulation of living cells for biomedical and biotechnological applications. However, classical genetic knockout and transcriptional knockdown technologies have different drawbacks and offer no control over existing protein levels. Here, we describe an efficient genome editing approach that affects specific protein abundances by changing the rates of both RNA synthesis and protein degradation, based on the two cross-kingdom control mechanisms CRISPRi and the N-end rule for protein stability. In addition, our approach demonstrates that CRISPRi efficiency is dependent on endogenous gene expression levels. The method has broad applications in e.g. study of essential genes and antibiotics discovery.
Detection of p-coumaric acid from cell supernatant using surface enhanced Raman scattering

A standard protocol for analysis of microbial factories requires the screening of several populations in order to find the best-performing ones. Standard analytical methods usually include high performance liquid chromatography (HPLC), thin layer chromatography (TLC) or spectrophotometry, which are expensive and time-consuming processes. Surface Enhanced Raman Spectroscopy (SERS), instead, is a highly sensitive spectroscopic technique for specific, fast and real-time sensing of biological samples. Here we demonstrate the use of SERS to discriminate between two different bacterial populations based on detection of p-coumaric acid (pHCA) in cell supernatant. SERS active substrates, based on leaning gold-capped silicon nanopillars, were used for detection. They were successfully used to detect culture medium spiked with pHCA, and the effect of medium dilution was studied. For analysis of biological production of pHCA, triplicate cultures of E. coli strains expressing a pHCA-forming enzyme (P) as well as of a non-producing strain (C) were grown. Then, supernatant samples were collected and their pHCA content was measured using SERS and HPLC for comparison. The intensity of the pHCA Raman mode at 1169 cm\(^{-1}\) (CH-rocking motion) showed different trends for P and C strains, similar to the results obtained using the HPLC method. Results illustrate that SERS can be used for quick and semiquantitative discrimination of pHCA concentrations in cell supernatant medium.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Morelli, L., Jendresen, C. B., Zor, K., Rindzevicius, T., Schmidt, M. S., Nielsen, A. T., Boisen, A.
Number of pages: 3
Pages: 190-192
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Procedia Technology
Volume: 27
ISSN (Print): 2212-0173
Ratings:
Web of Science (2019): Indexed yes
Exploiting the potential of gas fermentation

The use of gas fermentation for production of chemicals and fuels with lower environmental impact is a technology that is gaining increasing attention. Over 38 Gt of CO2 is annually being emitted from industrial processes, thereby contributing significantly to the concentration of greenhouse gases in the atmosphere. Together with the gasification of biomass and different waste streams, these gases have the potential for being utilized for production of chemicals through fermentation processes. Acetogens are among the most studied organisms capable of utilizing waste gases. Although engineering of heterologous production of higher value compounds has been successful for a number of acetogens, the processes are challenging due to the redox balance and the lack of efficient engineering tools. In this review, we address the availability of different gaseous feedstock and gasification processes, and we focus on the advantages of alternative fermentation scenarios, including thermophilic production strains, multi-stage fermentations, mixed cultures, as well as mixotrophy. Such processes have the potential to significantly broaden the product portfolio, increase the product concentrations and yields, while enabling the exploitation of alternative and mixed feedstocks. The reviewed processes also have the potential to address challenges associated with product inhibition and may contribute to reducing the costs of downstream processing. Given the widespread availability of gases, such processes will likely significantly impact the transition towards a more sustainable society.
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.19 SJR 1.091 SNIP 1.668
Web of Science (2017): Impact factor 3.849
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.78 SJR 1.06 SNIP 1.691
Web of Science (2016): Impact factor 3.181
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.7 SJR 1.049 SNIP 1.781
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.26 SJR 1.074 SNIP 1.723
Web of Science (2014): Impact factor 2.837
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.69 SJR 0.971 SNIP 2.044
Web of Science (2013): Impact factor 3.208
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.96 SJR 0.98 SNIP 1.925
Web of Science (2012): Impact factor 2.468
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.16 SJR 0.966 SNIP 2.078
Web of Science (2011): Impact factor 2.469
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.936 SNIP 1.744
Web of Science (2010): Impact factor 2.507
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.824 SNIP 1.537
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.727 SNIP 1.414
Scopus rating (2007): SJR 0.815 SNIP 1.308
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.771 SNIP 1.49
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.604 SNIP 1.319
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.793 SNIP 1.493
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.585 SNIP 1.145
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.496 SNIP 0.857
Scopus rating (2001): SJR 0.298 SNIP 0.82
Scopus rating (2000): SJR 0.453 SNIP 0.896
Genetic toolbox for controlled expression of functional proteins in Geobacillus spp.

Species of genus Geobacillus are thermophilic bacteria and play an ever increasing role as hosts for biotechnological applications both in academia and industry. Here we screened a number of Geobacillus strains to determine which industrially relevant carbon sources they can utilize. One of the strains, G. thermoglucosidasius C56-YS93, was then chosen to develop a toolbox for controlled gene expression over a wide range of levels. It includes a library of semi-synthetic constitutive promoters (76-fold difference in expression levels) and an inducible promoter from the xylA gene. A library of synthetic in silico designed ribosome binding sites was also created for further tuning of translation. The P_{xylA} was further used to successfully express native and heterologous xylanases in G. thermoglucosidasius. This toolbox enables fine-tuning of gene expression in Geobacillus species for metabolic engineering approaches in production of biochemicals and heterologous proteins.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization
Contributors: Pogrebnyakov, I., Jendresen, C. B., Nielsen, A. T.
Number of pages: 15
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: PLOS ONE
Volume: 12
Issue number: 2
Article number: e0171313
ISSN (Print): 1932-6203
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.01 SJR 1.164 SNIP 1.111
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.11 SJR 1.236 SNIP 1.101
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.32 SJR 1.427 SNIP 1.136
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.54 SJR 1.559 SNIP 1.148
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.94 SJR 1.772 SNIP 1.153
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.15 SJR 1.982 SNIP 1.156
Web of Science (2012): Impact factor 3.73
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution

L-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli. Here, E. coli lacking L-serine degradation pathways was evolved for improved tolerance by gradually increasing L-serine concentration from 3 to 100 g/L using adaptive laboratory evolution (ALE). Genome sequencing of isolated clones revealed multiplication of genetic regions, as well as mutations in thrA, thereby showing a potential mechanism of serine inhibition. Other mutations were evaluated by MAGE combined with amplicon sequencing, revealing role of rho, lrp, pykF, eno, and rpoB on tolerance and fitness in minimal medium. Production using the tolerant strains resulted in 37 g/L of L-serine with a 24% mass yield. The resulting titer is similar to the highest production reported for any organism thereby highlighting the potential of ALE for industrial biotechnology.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Applied Metabolic Engineering, Bacterial Cell Factory Optimization, iLoop, Network Reconstruction in Silico Biology, ALE Technology & Software Development
Number of pages: 24
Pages: 141–150
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Metabolic Engineering
Volume: 39
ISSN (Print): 1096-7176
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid

We present a robust easy to use lab-on-a-disc (LoD) device with integrated sample pre-treatment and electrochemical detection system for cell-free detection of a secondary metabolite, p-Coumaric acid (pHCA), produced by genetically modified E. coli. In the LoD device, which incorporates eight filtration and electrochemical detection units, the sample filtration was performed by rotating the disc using a programmable closed-loop stepper motor. The electrodes, patterned on plastic substrate, were connected through a printed circuit board to the slip ring using a robust magnetic clamping system that enables easy assembly and robust electrical connections. pHCA was quantified in a linear range from 0.125 up to 2 mM using square wave voltammetry. The platform was successfully used for the quantification of pHCA produced by two genetically modified E. coli strains after 24 h of cell culture. The data obtained from the electrochemical measurements showed good correlation with high performance liquid chromatographic analysis. The developed LoD system offers fast and easy detection of pHCA, enabling screening of genetically modified organisms based on the quantity of produced secondary metabolites.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Bioanalytics, Research Groups
Contributors: Sanger, K., Zor, K., Jendresen, C. B., Heiskanen, A., Amato, L., Nielsen, A. T., Boisen, A.
Pages: 999-1005
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Sensors and Actuators B: Chemical
Volume: 253
ISSN (Print): 0925-4005
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.67 SJR 1.406 SNIP 1.453
Web of Science (2017): Impact factor 5.667
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.07 SJR 1.343 SNIP 1.464
Web of Science (2016): Impact factor 5.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.84 SJR 1.225 SNIP 1.484
Web of Science (2015): Impact factor 4.758
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.37 SJR 1.229 SNIP 1.658
Web of Science (2014): Impact factor 4.097
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.25 SJR 1.261 SNIP 1.638
Web of Science (2013): Impact factor 3.84
Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools

This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermostolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of
genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring

During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min⁻¹ flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, BioLabChip, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Bioanalytics, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Pages: 4553-4559
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Analyst
Volume: 142
Issue number: 23
ISSN (Print): 0003-2654
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars,
which showed an in-wafer signal variation of only 11.7%. LLE using dichloromethane as organic phase was combined with
detection in order to increase selectivity and sensitivity by decreasing the effect of interfering compounds from the
analytes of interest. The difference in pHCA production yield between three genetically engineered E. coli strains was
successfully evaluated using SERS and confirmed with high-performance liquid chromatography. As this novel approach
has potential to be automated and parallelized, it can be considered for high-throughput screening in metabolic
engineering.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for
Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Center for Intelligent Drug Delivery and Sensing
Using Microcontainers and Nanomechanics
Contributors: Morelli, L., Zor, K., Jendresen, C. B., Rindzevicius, T., Schmidt, M. S., Nielsen, A. T., Boisen, A.
Number of pages: 7
Pages: 3981-3987
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Analytical Chemistry
Volume: 89
ISSN (Print): 0003-2700
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.24
Web of Science (2017): Impact factor 6.042
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.08
Web of Science (2016): Impact factor 6.32
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6
Web of Science (2015): Impact factor 5.886
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.79
Web of Science (2014): Impact factor 5.636
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.01
Web of Science (2013): Impact factor 5.825
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.8
Web of Science (2012): Impact factor 5.695
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.86
Web of Science (2011): Impact factor 5.856
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

Background: Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas via condensation. Results: In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 degrees C with respect to thermodynamic and economic feasibility. We determined the cost of syngas production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gas-liquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas-and corn stover-derived syngas were determined to be higher due to the higher feedstock costs (1724 and 2878 $/t acetone, respectively). Conclusion: We applied an approach of combining thermodynamic and economic assessment to analyze a hypothetical bioprocess in which the volatile product acetone is produced from syngas with a thermophilic microorganism. Our model allowed us to identify process metrics and quantify the variable production costs for different scenarios. Economical production of bulk chemicals is challenging, making rigorous thermodynamic/economic modeling critical before undertaking an experimental program and as an ongoing guide during the program. We intend this study to give an incentive to apply the demonstrated approach to other bioproduction processes.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Global Econometric Modeling, Bacterial Cell Factory Optimization, Research Groups, DSM Food Specialties
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Biotechnology for Biofuels
Volume: 10
Article number: 150
ISSN (Print): 1754-6834
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.93 SJR 1.899 SNIP 1.587
Using A Metabolic Model Of Acetobacterium woodii For Insights Into Its Utility For Biotechnological Purposes

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Oxford Brookes University
Contributors: Mesfin, N., Ingemann Jensen, S., Nielsen, A. T., Fell, D., Poolman, M.
Number of pages: 1
Publication date: 2017

Original language: English
Keywords: Syngas fermentation, Syngas, Biomass gasification, Basic oxygen furnace, Natural gas, Techno-economic evaluation, Acetone, Thermophilic fermentation, Biochemical production, Corn stover
Electronic versions:
s13068_017_0827_8.pdf

DOIs:
10.1186/s13068-017-0827-8

Bibliographical note
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

Source: FindIt
Source-ID: 2371403309
Research output: Research - peer-review › Journal article – Annual report year: 2017
Genetically modified microorganisms having improved tolerance towards L-serine.
The present invention generally relates to the microbiological industry, and specifically to the production of L-serine or L-serine derivatives using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes involved in the degradation of L-serine is attenuated, such as by inactivation, which makes them particularly suitable for the production of L-serine at higher yield. The present invention also provides means by which the microorganism, and more particularly a bacterium, can be made tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Applied Metabolic Engineering, Bacterial Cell Factory Optimization
Contributors: Mundhada, H., Nielsen, A. T.
Publication date: 4 Aug 2016

Publication information
IPC: C12N 15/00 A I
Patent number: WO2016120345
Date: 04/08/2016
Priority date: 27/01/2015
Priority number: EP20150152643
Original language: English

Bibliographical note
Also published as: WO2016120326 (A1)
Source: espacenet
Source-ID: WO2016120345
Research output: Research › Patent – Annual report year: 2016

Method for the production of L-serine using genetically engineered microorganisms deficient in serine degradation pathways.
The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes involved in the degradation of L-serine is attenuated, such as by inactivation, which makes them particularly suitable for the production of L-serine at higher yield. The present invention also provides means by which the microorganism, and more particularly a bacterium, can be made tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Applied Metabolic Engineering, Bacterial Cell Factory Optimization
Contributors: Mundhada, H., Nielsen, A. T.
Publication date: 4 Aug 2016

Publication information
IPC: C12N 15/00 A I
Patent number: WO2016120326
Date: 04/08/2016
Priority date: 27/01/2015
Priority number: EP20150152643
A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation
The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target
gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter
system. In addition the invention relates to the use of the dual cassette reporter system for assessing target gene
translation and target gene product folding.

A process for producing a fermentation product from a lignocellulose-containing material.
The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to
fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors
and toxins formed during the processing of lignocellulose-containing material by enzymatically sulfating the phenolic
inhibitors and toxins using aryl sulfotransferases.

Biological processes for the production of aryl sulfates.
The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using
polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to
polypeptides having aryl sulfotransferase activity, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells.

Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity.
The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well as recombinant host cells expressing same.

Broad host range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440
Pseudomonas putida KT2440 has gained increasing interest as a host for the production of biochemicals. Because of the lack of a systematic characterization of inducible promoters in this strain, we generated ProUSER broad-host-expression plasmids that facilitate fast uracil-based cloning. A set of ProUSER-reporter vectors was further created to characterize different inducible promoters. The PrhaB and Pm promoters were orthogonal and showed titratable, high, and homogeneous expression. To optimize the production of p-coumaric acid, P. putida was engineered to prevent degradation of tyrosine and p-coumaric acid. Prm and PrhaB were used to control the expression of a tyrosine ammonia lyase or AroG* and TyrA* involved in tyrosine production, respectively. Pathway expression was optimized by modulating inductions, resulting in small-scale p-coumaric acid production of 1.2 mM, the highest achieved in Pseudomonads under comparable conditions. With broad-host-range compatibility, the ProUSER vectors will serve as useful tools for optimizing gene expression in a variety of bacteria.
Consortia based production of biochemicals

One of the great challenges facing society is how to sustainably produce food, chemicals and other commodities required to maintain and develop our current life style. To compete with and ultimately replace existing petrochemical-based manufacturing processes, the development of innovative and effective solutions is needed.

In this project we have explored the possibility of using designed consortiums for the covalorization of the main carbon sources in lignocellulosic biomass (xylose, glucose, arabinose, and acetic acid). In one study we have used pre processing simulations, constraint-based modelling, and state-of-the art metabolic engineering tools to develop a consortium of cells capable of efficient valorization of synthetic hemicellulosic hydrolysate. Stable co-existence and effective covalorization was achieved through niche-differentiation, auxotrophy, and adaptive evolution. In another study, stable consortia based fermentation was achieved through niche partitioning, syntrophy (auxotrophy combined with removal of inhibitory side product), and CRISPRi mediated gene silencing. The achieved results demonstrate that consortium based approaches for valorizing complex biomass and waste related carbon sources can be an attractive alternative to the design of a so-called “superbug” and can thereby add significant value to biorefineries.

CRMAGE: CRISPR Optimized MAGE Recombineering

A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of *Escherichia coli*. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering.
Developing Lactic Acid Bacteria for the conversion of brown macroalgae into green chemicals and fuels

Microbial conversion of biomass plays a major role in establishing a bio-based economy, which aims at replacing fossil resources with renewable substrates for the production of fuels and chemicals. Current efforts in using non-edible ('second generation') biomass rather than food-derived sugars focus on lignocellulosic materials such as crop residues and non-edible plants. However, lignin is often toxic to the production organism and hard to eliminate, and economically feasible conversion of cellulose and hemicellulose is still challenging. An attractive alternative includes brown macroalgae or seaweed, which do not contain lignin, do not require fresh water, are not a major food source, and contain a higher sugar fraction. The main sugars are mannitol, laminarin (glucose) and alginate (guluronate and mannuronate). We will use metabolic engineering and laboratory evolution of Lactic Acid Bacteria (LAB) for the conversion of brown macroalgae into green chemicals and fuels. To select the best-suited production platform, we are screening Lactobacillus and Pediococcus strains for traits like genetic accessibility, substrate utilization and several stress tolerances. Most microorganisms, including LAB, do not naturally utilize alginates and hence the introduction of these pathways will be the first step in engineering the selected strain, after which further efforts will focus on co-utilization of the different sugar fractions and establishment of product pathways.
Engineering of High Yield Production of L-serine in *Escherichia coli*

L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in *E. coli* MG1655 was prevented by deletion of three L-serine deaminases *sdaA*, *sdaB*, and *tdcG*, as well as serine hydroxyl methyl transferase (SHMT) encoded by *glyA*. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of *serA* along with *serB* and *serC*, this quadruple deletion strain showed a very high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8.3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of *eamA*, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation, the resulting strain lead to the serine production titer of 11.7 g/L with yield of 0.43 g/g glucose, which is the highest yield reported so far for any organism.
Enhanced protein and biochemical production using CRISPRi-based growth switches

Production of proteins and biochemicals in microbial cell factories is often limited by carbon and energy spent on excess biomass formation. To address this issue, we developed several genetic growth switches based on CRISPR interference technology. We demonstrate that growth of *Escherichia coli* can be controlled by repressing the DNA replication machinery, by targeting *dnaA* and *oriC*, or by blocking nucleotide synthesis through *pyrF* or *thyA*. This way, total GFP-protein production could be increased by up to 2.2-fold. Single-cell dynamic tracking in microfluidic systems was used to confirm functionality of the growth switches. Decoupling of growth from production of biochemicals was demonstrated for mevalonate, a precursor for isoprenoid compounds. Mass yield of mevalonate was increased by 41%, and production was maintained for more than 45 h after activation of the *pyrF*-based growth switch. The developed methods represent a promising approach for increasing production yield and titer for proteins and biochemicals.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Research Centre Julich (FZJ)
Number of pages: 11
Pages: 274-284
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Metabolic Engineering
Volume: 38
ISSN (Print): 1096-7176
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.95 SJR 3.337 SNIP 1.787
Web of Science (2017): Impact factor 7.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.33 SJR 3.626 SNIP 1.865
Web of Science (2016): Impact factor 8.142
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.2 SJR 3.6 SNIP 1.809
Web of Science (2015): Impact factor 8.201
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.23 SJR 3.395 SNIP 2.009
Web of Science (2014): Impact factor 6.767
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.43 SJR 4.036 SNIP 2.164
Web of Science (2013): Impact factor 8.258
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.72 SJR 2.989 SNIP 1.847
Web of Science (2012): Impact factor 6.859
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology approach was employed to understand the chemical stress response of *Escherichia coli*, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing *E. coli* chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.
Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

Microbial cell factories have been engineered to produce a variety of biochemicals, ranging from biofuels, food additives to pharmaceuticals. However, for most compounds, the production yield is far from reaching economical targets. Accumulation of excess biomass contributes to decreasing production yields, and a method for limiting biomass formation while allowing for continued production of biochemicals is therefore desirable. In this study, we investigated eight different culturing setups aiming at inhibiting biomass formation of *Escherichia coli*, based on nutrient limitations or the addition of growth inhibitors. The ability to control cell growth and the production of biochemicals, exemplified by mevalonate and tyrosine, was characterized. An increased mass yield of both mevalonate and tyrosine was achieved by limiting phosphate, sulfate or magnesium in the media. Sulfate limitation, in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements. The outlined method serves as promising approach for increasing production yield of a range of different biochemicals.
Lab-on-a-disc device for screening of genetically engineered E.coli cells

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Sanger, K., Zor, K., Jendresen, C. B., Amato, L., Burger, R., Boisen, A., Nielsen, A. T.
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Electronic versions:
Biosensors_poster.pdf
Research output: Research - peer-review › Poster – Annual report year: 2017

Moorella thermoacetica, a workhorse creating value from various gaseous substrates

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Jensen, T. Ø., Redl, S., Nielsen, A. T.
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Event: Abstract from CLOSTRIDIUM XIV, Hanover, New Hampshire, United States.
Electronic versions:
Abstract_Clostridium_Torbj rn.pdf
Source: PublicationPreSubmission
Source-ID: 126557659
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2016

Predictable tuning of protein expression in bacteria
We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expression level of any Escherichia coli gene by changing only a few bases. Measured protein levels for 91% of our designed sequences were within twofold of the desired target level.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Bacterial Cell Factory Optimization, iLoop, Research Groups
Contributors: Bonde, M., Pedersen, M., Klausen, M. S., Ingemann Jensen, S., Wulff, T., Harrison, S. J., Nielsen, A. T., Herrgard, M., Sommer, M. O. A.
Number of pages: 8
Pages: 233-236
Publication date: 2016
Peer-reviewed: Yes
Early online date: 2016

Publication information
Journal: Nature Methods
Volume: 13
ISSN (Print): 1548-7091
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
Production of Sulfated Organic Compounds in Cell Factories

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups

DOI: 10.1038/nmeth.3727
Source: FindIt
Source-ID: 2290280158
Research output: Research - peer-review > Journal article – Annual report year: 2016
Surface Enhanced Raman Spectroscopy detection of p-coumaric acid from cell supernatant using gold-capped silicon nanopillar substrates

A standard protocol for analysis of microbial factories requires the screening of several populations in order to find the best performing ones. This is done with standard analytical methods (e.g. HPLC) with an expensive and time-consuming process. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive spectroscopic technique which only requires drying a small volume of solution on an active substrate, with an analysis time of few minutes. Here we demonstrate the use of SERS to discriminate between two different bacterial populations based on detection of p-coumaric acid (pHCA) in cell supernatant. pHCA is a valuable secondary metabolite of genetically modified E. coli[1]. It is produced through deamination of tyrosine, and it has strong Raman and SERS activity[2],[3]. Gold capped silicon nanopillars were used as sensing substrates[4]. At first, they were successfully used to detect pHCA spiked in culture medium, in the same concentration range (10^{-4} – 10^{-5} M) commonly found in cell supernatant. For supernatant analysis, triplicate cultures of FjTAL modified (P strains) and control (C strains) E.coli strains were carried out according to the methods described by[5] and shown in Fig.1. Samples of cell supernatant were extracted from each culture at 0, 3, 24 and 48 h post seeding and their pHCA content was measured with HPLC[5]. For SERS analysis, aliquots of supernatant were diluted 10-fold with MilliQ water, and 1 μL droplets were dried on the SERS substrates. A MatLab analysis was performed to extract the height of the significant peak at 1169cm^{-1}, with the results shown in Fig.2. The amplitude of the peak shows a different trend for P and C strains. A similar trend is obtained from HPLC. These promising results open up new possibilities for the use of SERS for high-throughput and automated evaluation of bacterial factories, allowing parallel analysis and discrimination of different strains.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Publication date: 2016
Peer-reviewed: Yes
Source: PublicationPreSubmission
Source-ID: 127154620
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2016

Surface Enhanced Raman Spectroscopy detection of p-coumaric acid from cell supernatant using gold-capped silicon nanopillar substrates

The purpose of the project is to use Surface Enhanced Raman Spectroscopy (SERS) to discriminate between two different bacterial populations, based on their p-coumaric acid (pHCA) production. The pHCA concentration is measured in a droplet of diluted supernatant dried on SERS substrates, using a Raman microscope. By analyzing the SERS signal of pHCA from the supernatant, considering the peakheight at the characteristic frequency (1169 cm^{-1}) it is possible to distinguish between a producing and control strain, as also confirmed by HPLC analysis.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Event: Poster session presented at Metabolic Engineering 11, Kobe, Japan.
Source: PublicationPreSubmission
Source-ID: 124926936
Research output: Research › Poster – Annual report year: 2016

Thermophilic acetogens for the production of higher value compounds from (biomass derived) waste gas streams
The Ssr protein (T1E_1405) from *Pseudomonas putida* DOT-T1E enables oligonucleotide-based recombineering in platform strain *P. putida* EM42

Some strains of the soil bacterium *Pseudomonas putida* have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory *P. putida* EM42 (a derivative of reference strain KT2440) is still a time-consuming endeavor. In this work we have investigated the in vivo activity of the Ssr protein encoded by the open reading frame T1E_1405 from *Pseudomonas putida* DOT-T1E, a plausible functional homologue of the β protein of the Red recombination system of λ phage of *Escherichia coli*. A test based on the phenotypes of pyrF mutants of *P. putida* (the yeast's URA3 ortholog) was developed for quantifying the ability of Ssr to promote invasion of the genomic DNA replication fork by synthetic oligonucleotides. The efficiency of the process was measured by monitoring the inheritance of the changes entered into pyrF by oligonucleotides bearing mutated sequences. Ssr fostered short and long genomic deletions/insertions at considerable frequencies as well as single-base swaps not affected by mismatch repair. These results not only demonstrate the feasibility of recombineering in *P. putida*, but they also enable a suite of multiplexed genomic manipulations in this biotechnologically important bacterium.
Homologous recombination (HR) in *Saccharomyces cerevisiae* has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of *in vivo* assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful *in vivo* assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in *S. cerevisiae*.

CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of *in Vivo* Assembled DNA Parts in *Saccharomyces cerevisiae*

Homologous recombination (HR) in *Saccharomyces cerevisiae* has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of *in vivo* assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful *in vivo* assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in *S. cerevisiae*.

General information

State: Published

Organisations: Novo Nordisk Foundation Center for Biosustainability, Synthetic Biology Tools for Yeast, Yeast Metabolic Engineering, Yeast Cell Factories, Bacterial Cell Factories, Research Groups, Bacterial Cell Factory Optimization

Number of pages: 9

Pages: 1226-1234

Publication date: 2015

Peer-reviewed: Yes

Publication information

Journal: A C S Synthetic Biology
CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae

Background: One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. Results: Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native beta-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. Conclusions: The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.
Volume: 14
Issue number: 97
ISSN (Print): 1475-2859
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.2 SJR 1.443 SNIP 1.227
Web of Science (2017): Impact factor 3.831
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.92 SJR 1.481 SNIP 1.228
Web of Science (2016): Impact factor 3.681
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.08 SJR 1.563 SNIP 1.265
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.25 SJR 1.757 SNIP 1.52
Web of Science (2014): Impact factor 4.221
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.22 SJR 1.777 SNIP 1.483
Web of Science (2013): Impact factor 4.25
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.69 SJR 1.43 SNIP 1.363
Web of Science (2012): Impact factor 3.306
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.91 SJR 1.427 SNIP 1.386
Web of Science (2011): Impact factor 3.552
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.627 SNIP 1.481
Web of Science (2010): Impact factor 4.544
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.305 SNIP 1.288
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.367 SNIP 1.371
Scopus rating (2007): SJR 1.151 SNIP 1.277
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.967 SNIP 0.887
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.005 SNIP 1.035
Scopus rating (2004): SJR 0.621 SNIP 0.481
Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli

Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential roles in stress tolerance.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, Research Groups, Bacterial Cell Factory Optimization
Contributors: Rau, M. H., Nielsen, A. T., Long, K.
Number of pages: 16
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: B M C Genomics
Volume: 16
Issue number: 1051
ISSN (Print): 1471-2164
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.08 SJR 2.11 SNIP 1.151
Web of Science (2017): Impact factor 3.73
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.05 SJR 2.163 SNIP 1.096
Web of Science (2016): Impact factor 3.729
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.3 SJR 2.348 SNIP 1.159
Web of Science (2015): Impact factor 3.867
Web of Science (2015): Indexed yes
Differential expression of small RNAs under chemical stress and fed-batch fermentation in *Escherichia coli*

General information
- **State:** Published
- **Organisations:** Novo Nordisk Foundation Center for Biosustainability, Department of Systems Biology, Research Groups, Bacterial Cell Factory Optimization

Differential expression of small RNAs under chemical stress and fed-batch fermentation in *Escherichia coli*

Original language: English
Keywords: sRNA, RNA-seq, Fermentation, Chemical stress, MicF, RybB, OmrB, CyaR, RyhB

Electronic versions:

DOIs:
- 10.1186/s12864-015-2231-8

Research output: Research - peer-review; Journal article – Annual report year: 2015
Differential Expression Of Small Rnas Under Chemical Stress And Fed-batch Fermentation In Escherichia Coli

Introduction: Bacterial small RNAs (sRNAs) are often expressed in response to changing environmental conditions and function to modulate gene expression. Although chemical stress is routinely encountered in microbial processing applications, the cellular response and the involvement of sRNAs in this process is poorly understood. We have used RNA sequencing to map the Escherichia coli sRNome during chemical stress and high cell density fermentations with the aim of identifying sRNAs involved in the stress response and those with potential roles in stress tolerance.

Methods: RNA sequencing libraries were prepared from RNA isolated from E. coli MG1655 cells subjected to chemical stress with twelve compounds. The strain was also grown under high cell density fermentation conditions, where cells were harvested in four growth phases.

Results: We have discovered over 250 novel intergenic transcripts, adding to the roughly 200 previously reported sRNAs in E. coli. There are 84 and 139 differentially expressed sRNAs under fermentation and chemical stress conditions, respectively. In the latter case, approximately 30 exhibit significant expression changes in multiple conditions, suggesting their involvement in a more general chemical stress response.

Conclusions: This study has revealed a wealth of hitherto undescribed sRNAs and an atlas of expression under 17 growth conditions. A significant fraction of the sRNAs exhibit specific expression patterns during fermentation, and a group of them are differentially expressed in the presence of multiple chemicals, suggesting they may play regulatory roles during these stress conditions. These are candidates for improving stress tolerance and our understanding of the regulatory network during fermentation.
Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 μM cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 μM p-coumaric acid OD600 unit−1 in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases.
Moorella Strains for the Production of Biochemicals from Syngas

In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. An alternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy and carbon source for acetogenic bacteria, which can then produce biochemicals. In the syngas fermentation process even the recalcitrant lignin portion can be fully converted into higher value compounds. Still the cost-effectiveness of this process requires better understanding of the metabolism and modification of the acetogenic strains. In my PhD project I am laying the basis for production of higher value biochemicals (acetone) from syngas using Moorella strains as cell factories. Moorella has outstanding abilities that make it especially suitable for the syngas fermentation process (thermophily, carbon source utilization). Firstly, the project focuses on understanding the primary metabolism in acetogenic bacteria. The main research aspect is to determine acceptance of, and the exact growth rates on different carbon sources (C1, C6, gaseous substrates) in different Moorella strains. Genome analysis on pathway level is performed to link the genotype to the phenotype. Differential expression analysis between heterotrophic and autotrophic growth (RNA-seq) serves to elucidate the regulatory mechanisms underlying carbon source utilization. In the second part of my project I am developing tools for genetic manipulation of Moorella strains. For example, a pyrF deletion strain, which allows heterologous gene expression was constructed. These tools developed in my project will be applied to engineer bacterial cell factories for production of higher value biochemicals like acetone.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Redl, S., Jensen, T. Ø., Nielsen, A. T.
Number of pages: 1
Publication date: 2015
Peer-reviewed: Yes
Event: Abstract from The 7th Copenhagen Bioscience Conference, Hillerød, Denmark.
Electronic versions:
Moorella_Strains_for_the_Production_of_Biochemicals_from_Syngas.pdf
Source: PublicationPreSubmission
Source-ID: 118319849
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2015
Seven gene deletions in seven days: fast generation of *Escherichia coli* strains tolerant to acetate and osmotic stress

Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in *Escherichia coli*. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering genes and a rhamnose inducible flippase recombinase was constructed to facilitate fast marker-free deletions. To further speed up the procedure, we integrated the arabinose inducible lambda Red recombineering genes and the rhamnose inducible FLP into the genome of *E. coli* K-12 MG1655. This system enables growth at 37°C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains in which four to seven genes were deleted in *E. coli* W and *E. coli* K-12. The growth rate of an *E. coli* K-12 quintuple deletion strain was significantly improved in the presence of high concentrations of acetate and NaCl. In conclusion, we have generated a method that enables efficient and simultaneous deletion of multiple genes in several *E. coli* variants. The method enables deletion of up to seven genes in as little as seven days.

General information
State: Published
Organisations: Bacterial Cell Factories, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups
Contributors: Ingemann Jensen, S., Lennen, R., Herrgard, M., Nielsen, A. T.
Number of pages: 10
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Scientific Reports
Volume: 5
Article number: 17874
ISSN (Print): 2045-2322
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.245
Web of Science (2017): Impact factor 4.122
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.63 SJR 1.692 SNIP 1.354
Web of Science (2016): Impact factor 4.259
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.3 SJR 2.034 SNIP 1.597
Web of Science (2015): Impact factor 5.228
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.75 SJR 2.163 SNIP 1.554
Web of Science (2014): Impact factor 5.578
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.06 SJR 1.998 SNIP 1.57
Web of Science (2013): Impact factor 5.078
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.44 SJR 1.531 SNIP 0.962
Web of Science (2012): Impact factor 2.927
Accelerating Genome Editing in CHO Cells Using CRISPR Cas9 and CRISPy, a Web-Based Target Finding Tool

Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry as a host for the production of complex pharmaceutical proteins. Thus genome engineering of CHO cells for improved product quality and yield is of great interest. Here, we demonstrate for the first time the efficacy of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved by applying lectin selection. All eight sgRNAs examined in this study resulted in relatively high indel frequencies, demonstrating that the Cas9 system is a robust and efficient genome editing methodology in CHO cells. Deep sequencing revealed that 85% of the indels created by Cas9 resulted in frameshift mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named "CRISPy" for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27,553 genes and lists the number of off-target sites in the genome. In conclusion, the proven functionality of Cas9 to edit CHO genomes combined with our CRISPy database have the potential to accelerate genome editing and synthetic biology efforts in CHO cells.
Increased tolerance towards serine obtained by adaptive laboratory evolution
The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial applications have not yet been achieved. This is partly due to the fact that the key serine degradation pathway (serine to glycine), encoded by glyA, has not yet been successfully deleted in E. coli or C. glutamicum. So far, the most successful attempts of serine production have been achieved using a C. glutamicum auxotroph for the cofactor of glyA, however, this requires the use of rich fermentation media or the addition of folic acid. Here, we demonstrate that the two major pathways for degradation of serine can be deleted in E. coli MG1655. In addition to the conversion of serine to glycine (encoded by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution was implemented using a state of the art robotics platform. The strain was grown under inhibiting concentrations of serine in minimal media and was periodically transferred to new media during mid log phase. After achieving a desired increase in growth rate, the concentration was serine was gradually increased. During the evolution experiment, the serine tolerance was increased substantially. Genome re-sequencing was subsequently used to analyze the genotype of a number of selected strains. These results reveal insights towards the adaptation process as well as the mechanism of serine tolerance.

Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms
Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level, the energy conservation mechanism of syngas fermenting microorganisms has not yet been entirely elucidated. Furthermore, there was a lack of genetic tools to study and ultimately enhance their metabolic capabilities. Recently, substantial progress has been made in understanding the intricate energy conservation mechanisms of these microorganisms. Given the complex relationship between energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic manipulation tools have also been developed, paving the way for the use of metabolic engineering and systems biology approaches. Rational strain designs can now be deployed resulting in desirable phenotypic traits for large-scale production. © 2013 Elsevier Ltd.
Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor

We present an all-polymer electrochemical microfluidic biosensor using Topas® as substrate and a conductive polymer bilayer as electrode material. The conductive bilayer consists of tosylate doped poly(3,4-ethylenedioxythiophene) (PEDOT:TsO) and the hydroxymethyl derivative PEDOT-OH:TsO, which was covalently functionalized with two aptamer probes with affinity to ampicillin or kanamycin A, respectively. Using electrochemical impedance spectroscopy (EIS) we were able to detect ampicillin in a concentration range from 100pM to 1 μM and kanamycin A from 10nM to 1mM. The obtained EIS spectra were fitted with an equivalent circuit model successfully explaining the impedance signal. Real samples from regular ultra-high temperature treated low-fat milk spiked with ampicillin were successfully tested to assess the functionality of the sensor with real samples. In conclusion, we have demonstrated the applicability of the newly developed platform for real time, label-free and selective impedimetric detection of commonly used antibiotics. Additionally it was possible to detect ampicillin in a milk sample at a concentration below the allowed maximum residue limit (MRL) in the European Union. © 2013 Elsevier B.V.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Polymer Microsystems for Medical Diagnostics, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, CFB - Core Flow
Contributors: Dapra, J., Lauridsen, L. H., Nielsen, A. T., Rozlosnik, N.
Pages: 315-320
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Biosensors and Bioelectronics
Volume: 43
Issue number: 1
ISSN (Print): 0956-5663
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.83 SJR 2.373 SNIP 1.65
Web of Science (2017): Impact factor 8.173
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.22 SJR 2.095 SNIP 1.619
Web of Science (2016): Impact factor 7.78
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.07 SJR 2.044 SNIP 1.671
Characterization of a Feedback-Resistant Mevalonate Kinase from the Archaeon Methanosarcina mazei

The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M.

Web of Science (2015): Impact factor 7.476
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.57 SJR 2.057 SNIP 1.716
Web of Science (2014): Impact factor 6.409
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.34 SJR 2.029 SNIP 1.726
Web of Science (2013): Impact factor 6.451
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.7 SJR 2.397 SNIP 1.592
Web of Science (2012): Impact factor 5.437
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.85 SJR 2.126 SNIP 1.704
Web of Science (2011): Impact factor 5.602
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.143 SNIP 1.609
Web of Science (2010): Impact factor 5.361
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.991 SNIP 1.771
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.495 SNIP 1.782
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.111 SNIP 1.962
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.911 SNIP 1.658
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.455 SNIP 1.596
Scopus rating (2004): SJR 1.436 SNIP 1.603
Scopus rating (2003): SJR 1.245 SNIP 1.568
Scopus rating (2002): SJR 1.016 SNIP 1.252
Scopus rating (2001): SJR 1.188 SNIP 1.558
Scopus rating (2000): SJR 1.11 SNIP 1.33
Scopus rating (1999): SJR 0.985 SNIP 0.919
Original language: English
Keywords: Antibiotics, Electrochemical impedance spectroscopy, Methanol, Polymers, Spectroscopy, Sulfur compounds, Biosensors
DOI:
10.1016/j.bios.2012.12.058
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/379393549::25924
Research output: Research - peer-review › Journal article – Annual report year: 2013

Characterization of a Feedback-Resistant Mevalonate Kinase from the Archaeon Methanosarcina mazei

The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M.
Mazei MVK by the following metabolites derived from the mevalonate pathway was explored: dimethylallyl diphosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), isopentenyl monophosphate (IP), and diposphomevalonate. Mazei MVK was not inhibited by DMAPP, GPP, FPP, diposphomevalonate, or IP, a proposed intermediate in an alternative isoprenoid pathway present in archaea. Our findings suggest that the Mazei MVK represents a distinct class of mevalonate kinases that can be differentiated from previously characterized MVKs based on its inhibition profile.

General information
State: Published
Organisations: Genencor, Inc.
Number of pages: 7
Pages: 7772-7778
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Applied and Environmental Microbiology
Volume: 77
Issue number: 21
ISSN (Print): 0099-2240
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.99
Web of Science (2017): Impact factor 3.633
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.08
Web of Science (2016): Impact factor 3.807
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.14 SJR 1.891 SNIP 1.308
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.02 SJR 1.857 SNIP 1.384
Web of Science (2014): Impact factor 3.668
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.25 SJR 1.899 SNIP 1.414
Web of Science (2013): Impact factor 3.952
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.29 SJR 1.975 SNIP 1.429
Web of Science (2012): Impact factor 3.678
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.12 SJR 1.914 SNIP 1.455
Web of Science (2011): Impact factor 3.829
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients.

General information
State: Published
Organisations: Department of Systems Biology, Stanford University School of Medicine
Number of pages: 23
vpsA- and luxO-independent biofilms of Vibrio cholerae

The natural life cycle of Vibrio cholerae involves the transitioning of cells between different environmental surfaces such as the chitinous shell of Crustacea and the epithelial layer of the human intestine. Previous studies using static biofilm systems showed a strict dependence of biofilm formation on the vps and lux genes, which are essential for exopolysaccharide formation and cell-cell signaling, respectively. The authors' report here that in biofilms grown under hydrodynamic conditions, Delta vpsA and Delta luxO mutants of V. cholerae do form pronounced, three-dimensional biofilms that resemble all aspects of wild-type biofilms. By genetic experiments, it was shown that in hydrodynamically grown biofilms this independence of vpsA is due to the expression of rpoS, which is a negative regulator of vpsA expression. Biofilms also underwent substantial dissolution after 96 h that could be induced by a simple stop of medium flow. The studies indicate that metabolic conditions control the reversible attachment of cells to the biofilm matrix and are key in regulating biofilm cell physiology via RpoS. Furthermore, the results redefine the roles of vps and quorum-sensing in V. cholerae biofilms.
RpoS controls the *Vibrio cholerae* mucosal escape response

Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of *V. cholerae* O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the "mucosal escape response," this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR.
Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.

General information

State: Published
Organisations: Stanford University School of Medicine, Stanford University
Number of pages: 16
Pages: 933-948
Publication date: 2006
Peer-reviewed: Yes

Publication information

Journal: P L o S Pathogens
Volume: 2
Issue number: 10
ISSN (Print): 1553-7366
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.05 SJR 4.006 SNIP 1.548
Web of Science (2017): Impact factor 6.158
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.46 SJR 4.736 SNIP 1.639
Web of Science (2016): Impact factor 6.608
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.14 SJR 5.144 SNIP 1.785
Web of Science (2015): Impact factor 7.003
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.67 SJR 5.324 SNIP 1.933
Web of Science (2014): Impact factor 7.562
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.22 SJR 5.511 SNIP 2.004
Web of Science (2013): Impact factor 8.057
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.33 SJR 5.051 SNIP 1.92
Web of Science (2012): Impact factor 8.136
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 8.87 SJR 5.736 SNIP 1.988
Chitin, an insoluble polymer of GlcNAc, is an abundant source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression profiling and mutational studies of Vibrio cholerae growing on a natural chitin surface, or with the soluble chitin oligosaccharides (GlcNAc)2-6, GlcNAc, or the glucosamine dimer (GlcN)2 identified three sets of differentially regulated genes. We show that (i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)2-6 gene set, including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PiIA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a significant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of genes involved with chitin chemotaxis and adherence and with the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface chemistry. Collectively, these results provide a global portrait of a complex, multistage V. cholerae program for the efficient utilization of chitin.

The Vibrio cholerae chitin utilization program

Chitin, an insoluble polymer of GlcNAc, is an abundant source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression profiling and mutational studies of Vibrio cholerae growing on a natural chitin surface, or with the soluble chitin oligosaccharides (GlcNAc)2-6, GlcNAc, or the glucosamine dimer (GlcN)2 identified three sets of differentially regulated genes. We show that (i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)2-6 gene set, including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PiIA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a significant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of genes involved with chitin chemotaxis and adherence and with the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface chemistry. Collectively, these results provide a global portrait of a complex, multistage V. cholerae program for the efficient utilization of chitin.
Single nucleotide polymorphism genotyping using locked nucleic acid (LNA)

Locked nucleic acid (LNA™) is a new class of bicyclic high affinity DNA analogs. LNA-containing oligonucleotides confer significantly increased affinity against their complementary DNA targets, increased mismatch discrimination (ΔTm) and allow full control of the melting point of the hybridization reaction. LNA chemistry is completely compatible with the traditional DNA phosphoramidite chemistry and therefore LNA-DNA mixer oligonucleotides can be designed with complete freedom for optimal performance. These properties render LNA oligonucleotides very well suited for SNP genotyping and have enabled several approaches for enzyme-independent SNP genotyping based on allele-specific hybridization. In addition, allele-specific PCR assays relying on enzymatically-enhanced discrimination can be improved using LNA-modified oligonucleotides. The use of LNA transforms enzyme-independent genotyping approaches into experimentally simple, robust and cost-effective assays, which are highly suited for genotyping in clinical and industrial settings.
In situ examination of microbial populations in a model drinking water distribution system

A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates and flagellates) were often seen attached to the microcolonies. The biofilm was hybridized with oligonucleotide probes specific for all bacteria and the α- and β-subclass of Proteobacteria and visualized with a scanning confocal laser microscope. Hybridization showed that the microcolonies primarily consisted of a mixed population of α- and β-Proteobacteria. 65 strains from the inlet water and 20 from the biofilm were isolated on R2A agar plates and sorted into groups with amplified rDNA restriction analysis. The 16S rDNA gene was sequenced for representatives of the abundant groups. A phylogenetic analysis revealed that the majority of the isolated strains from the bulk water and biofilm were affiliated to the family of Comamonadaceae in the β-lineage of Proteobacteria. The majority of the strains from the α-lineage were affiliated to the family of Sphingomonadaceae. We were unable to detect any strains from the Pseudomonas genus and found a low abundance of bacteria affiliated to the γ-subclass of Proteobacteria where Pseudomonas and E. coli are positioned. The analysis revealed a high bacterial diversity in the water phase as well as the biofilm, but no strains were found in both environments.

General information
State: Published
Organisations: Department of Systems Biology, Department of Environmental Engineering, Exiqon A/S
Contributors: Martiny, A. C., Nielsen, A. T., Arvin, E., Molin, S., Albrechtsen, H.
Pages: 283-288
Publication date: 2002
Peer-reviewed: Yes

Publication information
Journal: Water Science and Technology: Water Supply
Volume: 2
Issue number: 3
ISSN (Print): 1606-9749
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.7 SJR 0.258 SNIP 0.432
Web of Science (2017): Impact factor 0.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.65 SJR 0.273 SNIP 0.473
Web of Science (2016): Impact factor 0.573
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.64 SJR 0.295 SNIP 0.473
Web of Science (2015): Impact factor 0.532
In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process

Polyphosphate- and polyhydroxyalkanoate (PHA)-accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes indicated that the microbial community consisted mostly of the alpha- (9.5% of total cells), beta- (41.3%) and gamma- (6.8%) subclasses of the class Proteobacteria, Flexibacter-Cytophaga (4.5%) and the Gram-positive high G+C (HGC) group (17.9%), with individual phylogenetic groups or subgroups, members of Candidatus Accumulibacter phosphatis in the beta-2 subclass, a novel HGC group closely related to Tetrasphaera spp., and a novel gamma-proteobacterial group that were the predominant populations. Furthermore, electron microscopy with energy-dispersive X-ray analysis was used to validate the staining specificity of 4,6-diamino-2-phenylindole (DAPI) for intracellular polyphosphate and revealed the composition of polyphosphate granules accumulated in predominant bacteria as mostly P, Ca and Na. As a result, DAPI and PHA staining procedures could be combined with FISH to identify directly the polyphosphate- and PHA-accumulating traits of different phylogenetic groups. Members of Accumulibacter phosphatis and the novel gamma-proteobacterial group were observed to accumulate both polyphosphate and PHA. In addition, one novel rod-shaped group, closely related to coccus-shaped Tetrasphaera, and one filamentous group resembling Candidatus Nostocoidia limicola in the HGC group were found to accumulate polyphosphate but not PHA. No cellular inclusions were detected in most members of the alpha-Proteobacteria and the Cytophaga-Flavobacterium group. The diversified functional traits observed suggested that different substrate metabolisms were used by predominant phylogenetic groups in EBPR processes.
Multiplex SNP genotyping using Locked Nucleic Acid and microfluidics

Locked Nucleic Acid's or LNA are a new class of bicyclic DNA analogues that have a high affinity and specificity towards complementary nucleic acids. LNA containing oligonucleotides were used to develop a multiplex SNP genotyping assay based entirely on hybridization between capture probe and target. The approach incorporates a polymer microarray platform, photochemistry for immobilization of oligonucleotides onto microarrays, and a dedicated software tool to aid primer and capture probe design for highly multiplex genotyping. Furthermore, these technologies are combined in an integrated microfluidics platform for simple, highly multiplex and robust SNP genotyping.

General information
State: Published
Organisations: Exiqon A/S
Contributors: Choleva, Y., Nørholm, M., Pedersen, S., Mouritzen, P., Heiby, P. E., Nielsen, A. T., Møller, S., Jakobsen, M. H., Kongsbak, L.
Number of pages: 6
Pages: XVI-XVII
Publication date: 2001
Peer-reviewed: Yes

Publication information
Journal: Journal of Laboratory Automation
Volume: 6
Issue number: 4
ISSN (Print): 2211-0682
Ratings:
Scopus rating (2017): CiteScore 2.11 SJR 0.593 SNIP 1.028
Web of Science (2017): Impact factor 2.632
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.57 SJR 0.456 SNIP 0.64
Web of Science (2016): Impact factor 2.85
Scopus rating (2015): CiteScore 1.43 SJR 0.424 SNIP 0.681
Web of Science (2015): Impact factor 1.297
Scopus rating (2014): CiteScore 1.38 SJR 0.493 SNIP 0.64
Web of Science (2014): Impact factor 1.879
Monitoring of cellular activities in multispecies bacterial surface communities

General information
State: Published
Organisations: Center for Systems Microbiology, Department of Systems Biology, Division of Microbiology and Risk Assessment, National Food Institute, Department of Microbiology
Pages: 497-502
Publication date: 2000

Host publication information
Title of host publication: Atlantic Canada Society for Microbial Ecology
Place of publication: Halifax, Canada
Publisher: Atlantic Canada Society for Microbial Ecology
Editors: Bell, C. R., Brylinsky, M., Johnson-Green, P.
ISBN (Print): 09-68-67630-8
Source: FindIt
Source-ID: 2187536151
Research output: Research - peer-review › Journal article – Annual report year: 2001

Quantification of biofilm structures by the novel computer program COMSTAT

General information
State: Published
Organisations: Department of Microbiology, Department of Systems Biology, Center for Biomedical Microbiology, Department of Informatics and Mathematical Modeling, Image Analysis and Computer Graphics
Contributors: Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M. C., Ersbøll, B. K., Molin, S.
Role of commensal relationships on the spatial structure of a surface-attached microbial consortium

General information
State: Published
Organisations: Department of Microbiology, Department of Systems Biology, Center for Systems Microbiology
Contributors: Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B., Mølin, S.
Pages: 59-68
Publication date: 2000
Distribution of bacterial growth activity in flow-chamber biofilms

In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has been designed. It comprises a transposon cassette carrying fusions between the growth rate-regulated Escherichia coli rrnBP1 promoter and different variant gfp genes. It is shown that the pi promoter is regulated in the same way in E. coli and Pseudomonas putida, making it useful for monitoring of growth activity in organisms outside the group of enteric bacteria. Construction of fusions to genes encoding unstable Gfp proteins opened up the possibility of the monitoring of rates of rRNA synthesis and, in this way, allowing on-line determination of the distribution of growth activity in a complex community. With the use of these reporter tools, it is demonstrated that individual cells of a toluene-degrading P. putida strain growing in a benzyl alcohol-supplemented biofilm have different levels of growth activity which develop as the biofilm gets older. Cells that eventually grow very slowly or not at all may be stimulated to restart growth if provided with a more easily metabolizable carbon source. Thus, the dynamics of biofilm growth activity has been tracked to the level of individual cells, cell clusters, and microcolonies.

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, National Food Institute, Division of Microbiology and Risk Assessment, Danish Veterinary and Food Administration
Pages: 4108-4117
Publication date: 1999
Peer-reviewed: Yes

Publication information
Journal: Applied and Environmental Microbiology
Volume: 65
Issue number: 9
ISSN (Print): 0099-2240
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.99
Web of Science (2017): Impact factor 3.633
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.08
Web of Science (2016): Impact factor 3.807
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor

The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversity. Up to 11 DGGE bands representing at least 11 different sequence types were observed; DNA from the 6 most dominant of these bands was further isolated and sequenced. Comparative phylogenetic analysis of the partial 16S rRNA sequences suggested that one sequence type was affiliated with the alpha subclass of the Proteobacteria, one was associated with the Legionella group of the gamma subclass of the Proteobacteria, and the remaining four formed a novel group of the gamma subclass of the Proteobacteria with no close relationship to any previously described species. The novel group represented approximately 75% of the PCR-amplified DNA, based on the DGGE band intensities. Two oligonucleotide RNA probes for this novel group were designed and used in a whole-cell hybridization analysis to investigate the abundance of this novel group in situ. The bacteria were coccoid and 3 to 4 μm in diameter and represented approximately 35% of the total population, suggesting a relatively close agreement with the results obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells.

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, National Central University, Clemson University, Northwestern University
Contributors: Nielsen, A. T., Liu, W., Filipe, C., Grady, L., Molin, S., Stahl, D. A.
Pages: 1251-1258
Publication date: 1999
Peer-reviewed: Yes

Publication information
Journal: Applied and Environmental Microbiology
Volume: 65
Issue number: 3
ISSN (Print): 0099-2240
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.99
Web of Science (2017): Impact factor 3.633
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.08
Web of Science (2016): Impact factor 3.807
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.14 SJR 1.891 SNIP 1.308
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.02 SJR 1.857 SNIP 1.384
Web of Science (2014): Impact factor 3.668
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.25 SJR 1.899 SNIP 1.414
Web of Science (2013): Impact factor 3.952
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Molecular tools for study of biofilm physiology

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, National Food Institute, Division of Microbiology and Risk Assessment, Danish Veterinary and Food Administration, University of Tennessee
Contributors: Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Nielsen, A. T., Givskov, M. C., Molin, S.
Pages: 20-42
Publication date: 1999

Host publication information
Title of host publication: Methods in Enzymology
Publisher: Academic Press
Source: orbit
Source-ID: 174055
Research output: Research - peer-review › Article in proceedings – Annual report year: 1999
Projects:

Application and optimization of genetic systems for two-stage fermentation technology
Rong, Y., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Nielsen, A. T., Main Supervisor
Ingemann Jensen, S., Supervisor
Woodley, J., Supervisor
01/03/2019 → 28/02/2022
Project: PhD

Development of an innovative bioprocess for protease production in Bacillus subtilis by integrating cell factory optimization and bioreactor engineering
Driessen, J., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Mussatto, S. I., Main Supervisor
Meyer, A. S., Supervisor
Nielsen, A. T., Supervisor
01/10/2018 → 30/09/2021
Project: PhD

Accessing the catalytic potential of the soil bacterium Pseudomonas putida through dedicated synthetic biology tools
Kozaeva, E., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Nikel, P. I., Main Supervisor
Nielsen, A. T., Supervisor
01/09/2018 → 31/08/2021
Award relations: Accessing the catalytic potential of the soil bacterium Pseudomonas putida through dedicated synthetic biology tools
Project: PhD

Harnessing the Oxidative Power of Enzymes
Falkenberg, K. B., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Nørholm, M., Main Supervisor
Nielsen, A. T., Supervisor
01/11/2016 → 31/10/2019
Award relations: Harnessing the Oxidative Power of Enzymes
Project: PhD

Inducible growth decoupling systems for improved production of biochemicals
Landberg, J. M., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Nielsen, A. T., Main Supervisor
Nørholm, M., Supervisor
01/09/2017 → 31/08/2020
Award relations: Inducible growth decoupling systems for improved production of proteins and biochemicals
Project: PhD

Synthetic Biology tool Development for Protein engineering and study of adaptive evolution in Bacteria
Lauritsen, I., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Nørholm, M., Main Supervisor
Nielsen, A. T., Supervisor
Technical University of Denmark
01/11/2016 → 31/10/2019
Award relations: Synthetic Biology tool Development for Protein engineering and study of adaptive evolution in Bacteria
Project: PhD

Engineering of Thermophilic bacteria for the production of industrially relevant chemicals
Pogrebnyakov, I., PhD Student, Department of Systems Biology
Synthetic biology solutions to phenotypic instability in cell factory engineering
Sarup-Lytzen, K., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Somer, M. O. A., Main Supervisor
Nielsen, A. T., Supervisor
Anden EU-finansiering
01/02/2016 → 07/02/2020
Award relations: Synthetic biology solutions to phenotypic instability in cell factory engineering
Project: PhD

Fysiologisk karakterisering af mikrobielle overfladesamfund
Nielsen, A. T., PhD Student, Department of Systems Biology
Molin, S., Main Supervisor
Gram, L., Examiner
Nybøe, O., Examiner
DTU-Su Stipendium, Eksperiment
01/09/1997 → 23/05/2001
Award relations: Fysiologisk karakterisering af mikrobielle overfladesamfund
Project: PhD

Aptameric Biosensor Arrays for Metabolic Engineering
Lauridsen, L. H., PhD Student, Department of Systems Biology
Nielsen, A. T., Main Supervisor
Somer, M. O. A., Supervisor
Nørholm, M., Examiner
Gallivan, J., Examiner
Sloth Andersen, E., Examiner
Technical University of Denmark
01/12/2011 → 29/04/2015
Award relations: Aptameric Biosensor Arrays for Metabolic Engineering
Project: PhD

Decouple Growth from Central Metabolism in order to Control Growth during Production of Biochemicals
Li, S., PhD Student, Department of Systems Biology
Nielsen, A. T., Main Supervisor
Nørholm, M., Examiner
Beck, Z. Q., Examiner
Rasmussen, M. D., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 01/09/2016
Award relations: Decouple Growth from Central Metabolism in order to Control Growth during Production of Biochemicals
Project: PhD

Bioactive compounds in mixed marine bacterial communities
Giubergia, S., PhD Student, Department of Systems Biology
Gram, L., Main Supervisor
Nielsen, K. F., Supervisor
Nielsen, A. T., Examiner
Niedermeyer, T., Examiner
Ingham, C. J., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 30/06/2016
Award relations: Bioactive compounds in mixed marine bacterial communities
Standardization of DNA Vector Design-Processes
Cavaleiro, M., PhD Student, Department of Systems Biology
Nørholm, M., Main Supervisor
Nielsen, A. T., Supervisor
Jensen, M. K., Examiner
Hillson, N. J., Examiner
Nour-Eldin, H. H., Examiner
Marie Curie (EU-stipendium)
01/03/2013 → 21/04/2016
Award relations: Standardization of DNA Vector Design-Processes
Project: PhD

Utilize Gasified Biomass and Waste Products (Synthesis Gas) for the Production of Biochemicals
Redl, S. M. A., PhD Student, Department of Systems Biology
Nielsen, A. T., Main Supervisor
Förster, J., Supervisor
Herrgard, M., Examiner
Simpson, S. D., Examiner
Soucaille, P., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 29/09/2016
Award relations: Utilize Gasified Biomass and Waste Products (Synthesis Gas) for the Production of Biochemicals
Project: PhD

The structure, dynamics and complexity of the bacterial transcriptome
D'Arrigo, I., PhD Student, Department of Systems Biology
Long, K., Main Supervisor
Sommer, M. O. A., Supervisor
Nielsen, A. T., Examiner
Vinther, J., Examiner
Ramos, J. L., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 30/06/2016
Award relations: The structure, dynamics and complexity of the bacterial transcriptome
Project: PhD

Generate Prototype Expression Platforms for Membrane Integrated Enzymes in E. coli
Vazquez Albacete, D., PhD Student, Department of Systems Biology
Nørholm, M., Main Supervisor
Nielsen, A. T., Examiner
Takos, A., Examiner
Drew, D., Examiner
Marie Curie (EU-stipendium)
01/09/2013 → 29/09/2016
Award relations: Generate Prototype Expression Platforms for Membrane Integrated Enzymes in E. coli
Project: PhD

Biosensors for Fermentation
Lehning, C. E., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Sommer, M. O. A., Main Supervisor
Nielsen, A. T., Supervisor
Molin, S., Examiner
Heinemann, M., Examiner
Draheim, R. R., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 21/06/2017
Award relations: Biosensors for Fermentation
Project: PhD
Production of biochemicals using P.putida as a host
Calero Valdayo, P. M., PhD Student, Department of Systems Biology
Nielsen, A. T., Main Supervisor
Molin, S., Supervisor
Long, K., Examiner
Tolker-Nielsen, T., Examiner
Ramos, J. L., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 30/06/2016
Award relations: Production of biochemicals using P.putida as a host
Project: PhD

Mining Bacteria Genomes for Novel Bioactive Compounds
Machado, H., PhD Student, Department of Systems Biology
Gram, L., Main Supervisor
Nielsen, A. T., Examiner
Schramm, A., Examiner
Ziemert, N., Examiner
Marie Curie (EU-stipendium)
01/05/2013 → 29/09/2016
Award relations: Mining Bacteria Genomes for Novel Bioactive Compounds
Project: PhD

Development of new metabolic engineering technologies for the production of biochemicals
Ronda, C., PhD Student, Department of Systems Biology
Nielsen, A. T., Main Supervisor
Molin, S., Supervisor
Förster, J., Examiner
de Gier, J., Examiner
Ingmer, H., Examiner
Technical University of Denmark
01/06/2012 → 25/11/2015
Award relations: Development of new metabolic engineering technologies for the production of biochemicals
Project: PhD

A riboswitch based method for in vivo selection of biocatalysts from large libraries
Genee, H. J., PhD Student, Department of Systems Biology
Sommer, M. O. A., Main Supervisor
Nielsen, A. T., Examiner
Suess, B., Examiner
de Lorenzo, V., Examiner
Technical University of Denmark
01/07/2012 → 02/09/2015
Award relations: A riboswitch based method for in vivo selection of biocatalysts from large libraries
Project: PhD

Microbial platform for expression of membrane integrated enzymes and sustainable production of high value chemicals
Søgaard, K. M., PhD Student, Department of Systems Biology
Nørholm, M., Main Supervisor
Nielsen, A. T., Supervisor
Kildegaard, H. F., Examiner
Daley, D. O., Examiner
Pedersen, P. A., Examiner
Technical University of Denmark
01/12/2012 → 27/01/2016
Award relations: Microbial platform for expression of membrane integrated enzymes and sustainable production of high value chemicals
Project: PhD

Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance
Aryal, N., PhD Student, Novo Nordisk Foundation Center for Biosustainability
Bacterial physiology in biofilms

We have studied a microbial community capable of degrading toluene and derivative compounds through the use of quantitative in situ rRNA hybridization, gene expression using fluorescent reporters and gene transfer. The community is composed of 7 members of which 3 organisms are capable of degrading toluene to carbon dioxide and water. The community is grown as continuous surface cultures in flow chambers with benzyl alcohol as the only carbon source. Population structure (relative proportions of the 7 species as well as their positions in three dimensions) are determined using in situ rRNA hybridization and confocal microscopy. Physiological activity is determined through quantitative rRNA hybridizations in single cells, from which growth rates are estimated. Specific gene expression is monitored through the use of green fluorescent protein as a reporter (allows single cell detection). Transfer of conjugative plasmids is followed as zygotic induction of GFP in transconjugant cells in the community. All methods used have been developed for applications in single cells for inspection in the fluorescence or confocal microscope. The goal is to build up an understanding of the way bacteria organise their activities in complex communities, and eventually to understand the coordinative aspects of this type of 'social life'. This first phase of the project was terminated at the end of 1999, due to the run-out of the Biotech framework grant. A new phase of this project financed through the anchoring of the Biotech grant will be initiated in 2000.

Molin, S., Project Manager, Department of Systems Biology
Sternberg, C., Project Participant, Department of Systems Biology
Andersen, J. B., Project Participant, Department of Systems Biology
Christensen, B. B., Project Participant, Department of Systems Biology
Givskov, M. C., Project Participant, Department of Systems Biology
Johansen, T., Project Participant, Department of Systems Biology
Nielsen, A. T., Project Participant, Department of Systems Biology
Heydorn, A., Project Participant, Department of Systems Biology
de Lorenzo, V., Project Participant, CSIC (Spain)
Ramos, J. L., Project Participant, CSIC (Spain)

Ukendt: DKK6,000,000.00
01/01/1996 → 31/12/1999

Collaborators: Spanish National Research Council , CSIC (Spain)

Award relations: Bacterial physiology in biofilms
Project: Research

Activities:

Current Opinion in Biotechnology (Journal)
Period: Dec 2015
Alex Toftgaard Nielsen (Editor)
Novo Nordisk Foundation Center for Biosustainability

Research Groups
Bacterial Cell Factory Optimization

Description
Section Editor, Chemical Biotechnology

Related journal
Current Opinion in Biotechnology
0958-1669
Central database
Activity: Research › Journal editor
Novo Nordisk Foundation Cluster Days
Period: 15 Nov 2015
Alex Toftgaard Nielsen (Lecturer)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
A dual reporter system for monitoring protein folding and translation

Related external organisation
Unknown external organisation

Activity: Talks and presentations › Conference presentations

DuPont Research Seminar Series
Period: 5 Nov 2015
Alex Toftgaard Nielsen (Invited speaker)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Optimizing production of biochemicals and proteins in E. coli

Related event
DuPont Research Seminar Series
05/11/2015 → …
Palo Alto, United States
Activity: Talks and presentations › Conference presentations

Technical University of Denmark (External organisation)
Period: 7 Aug 2015
Alex Toftgaard Nielsen (Chairman)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Chairman

Related external organisation
Technical University of Denmark
Kemitorvet, building 202, 2800, Kgs. Lyngby, Denmark
Activity: Membership › Membership in review committee

Aarhus University (External organisation)
Period: 12 Jun 2015
Alex Toftgaard Nielsen (Participant)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Opponent at Denis Selnihhin PhD defence at Aarhus University

Related external organisation

Aarhus University
Inge Lehmanns Gade 10, 8000, Aarhus C, Denmark
Activity: Membership › Membership in review committee

The 7th Copenhagen Bioscience Conference
Alex Toftgaard Nielsen (Organizer)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Related event

The 7th Copenhagen Bioscience Conference: Cell Factories and Biosustainability – technologies for cell factory construction
17/05/2015 → 21/11/2015
Hillerød, Denmark
Activity: Attending an event › Participating in or organising a conference

Stuttgart University, Institut für Technische Biochemie, Seminar Series
Period: 22 Jan 2015
Alex Toftgaard Nielsen (Invited speaker)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Production of Biochemicals in Bacteria

Related event

Stuttgart University, Institut für Technische Biochemie, Seminar Series
22/01/2015 → …
University of Stuttgart, Denmark
Activity: Talks and presentations › Conference presentations

C1NET – CHEMICALS FROM C1 GAS CONFERENCE
Period: 15 Jan 2015
Alex Toftgaard Nielsen (Invited speaker)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Production of Biochemicals in Bacteria

Related event

C1NET – CHEMICALS FROM C1 GAS CONFERENCE
14/01/2015 → 16/01/2015
Nottingham, United Kingdom
Activity: Talks and presentations › Conference presentations

University of Nottingham (External organisation)
Period: 2015 → …
Alex Toftgaard Nielsen (Participant)
Novo Nordisk Foundation Center for Biosustainability
Research Groups
Bacterial Cell Factory Optimization

Description
Member of Scientific Advisory Board
Degree of recognition: International

Related external organisation
University of Nottingham
Nottingham, United Kingdom
Activity: Membership › Membership of committees, commissions, boards, councils, associations, organisations, or similar