Towards Interactive Photorealistic Rendering

Interactive rendering applications are becoming more and more prominent in everyday life. In many fields, including manufacturing, product design and entertainment, photorealistic rendering is useful in predicting the appearance of complex materials. However, due to production and time constraints, applications need to be interactive to provide immediate feedback to the user.

In this thesis, we address this challenge by proposing new photorealistic interactive rendering techniques, that leverage the parallel power of graphics processing units (GPUs) in order to effectively create renderings based on the laws of physics. These techniques propose effective caching and filtering schemes in order to efficiently reuse data, either across space or across time.

We provide insights into different areas of computer graphics, including scene reconstruction, material parameter estimation, efficient data structures and physically based rendering models. Our goal is to explore the different compromises and trade-offs that are necessary to achieve accurate photorealistic renderings. More specifically, we contribute with two techniques: the first relates to fast rendering of translucent materials, accounting for directional effects of subsurface scattering. The second technique contributes with a fast reprojection scheme to improve temporal stability in interactive ray tracing, that can be applied on top of existing rendering algorithms. On top of these, we propose an innovative validation pipeline to compare renderings with actual images, with the final purpose of validating existing rendering and reconstruction techniques against a picture of the real world.

With these contributions, we demonstrate how it is possible to use effective caching schemes to effectively improve existing techniques to handle more complex optical effects, maintaining the time constraints of interactive rendering environments.
Interactive Stable Ray Tracing
Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-processing filters. Our technique is based on sample reprojection and explicit hole filling, rather than relying on hole-filling heuristics that can compromise image quality. We make reprojection practical in an interactive ray tracing context through the use of a super-resolution bitmask to estimate screen space sample density. We show significantly improved temporal stability as compared with supersampling and an existing reprojection techniques. We also investigate the performance and image quality differences between our technique and temporal antialiasing, which typically incurs a significant amount of blur. Finally, we demonstrate the benefits of stable ray tracing by combining it with progressive path tracing of indirect illumination.

Scene reassembly after multimodal digitization and pipeline evaluation using photorealistic rendering
Transparent objects require acquisition modalities that are very different from the ones used for objects with more diffuse reflectance properties. Digitizing a scene where objects must be acquired with different modalities requires scene reassembly after reconstruction of the object surfaces. This reassembly of a scene that was picked apart for scanning seems unexplored. We contribute with a multimodal digitization pipeline for scenes that require this step of reassembly. Our pipeline includes measurement of bidirectional reflectance distribution functions and high dynamic range imaging of the lighting environment. This enables pixelwise comparison of photographs of the real scene with renderings of the digital version of the scene. Such quantitative evaluation is useful for verifying acquired material appearance and reconstructed surface geometry, which is an important aspect of digital content creation. It is also useful for identifying and improving issues in the different steps of the pipeline. In this work, we use it to improve reconstruction, apply analysis by synthesis to estimate optical properties, and to develop our method for scene reassembly.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, NVIDIA
Authors: Dal Corso, A. (Intern), Salvi, M. (Ekstern), Kolb, C. (Ekstern), Frisvad, J. R. (Intern), Lefohn, A. (Ekstern), Luebke, D. (Ekstern)
Number of pages: 10
Publication date: 2017

Host publication information
Title of host publication: HPG '17 Proceedings of High Performance Graphics
Publisher: ACM Association for Computing Machinery
ISBN (Print): 978-1-4503-5101-0
Main Research Area: Technical/natural sciences
Conference: High-Performance Graphics 2017, Los Angeles, United States, 28/07/2017 - 28/07/2017
Reprojection, Dynamic scene, Caching, Temporal stability, GPU
DOIs: 10.1145/3105762.3105769
Source: PublicationPreSubmission
Source-ID: 137970914
Publication: Research - peer-review › Article in proceedings – Annual report year: 2017

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Department of Physics, Neutrons and X-rays for Materials Physics
Number of pages: 12
Pages: 7679-7690
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Optics
Volume: 56
Issue number: 27
ISSN (Print): 1559-128X
Ratings: BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes

BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.61 SJR 0.633 SNIP 1.095
Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.826 SNIP 1.225 CiteScore 1.66
Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.066 SNIP 1.534 CiteScore 2.04
Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.991 SNIP 1.616 CiteScore 1.98
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.046 SNIP 1.496 CiteScore 1.79
ISI indexed (2012): ISI indexed no

BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.044 SNIP 1.777 CiteScore 1.92
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes

BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.082 SNIP 1.636
Web of Science (2010): Indexed yes

BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.222 SNIP 1.71
Web of Science (2009): Indexed yes

BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.334 SNIP 1.711
Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 1.216 SNIP 1.613
Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 1.135 SNIP 1.748
Web of Science (2006): Indexed yes

Scopus rating (2005): SJR 1.192 SNIP 1.767
Web of Science (2005): Indexed yes

Scopus rating (2004): SJR 1.053 SNIP 1.889
Web of Science (2004): Indexed yes

Scopus rating (2003): SJR 1.236 SNIP 1.679
Web of Science (2003): Indexed yes

Scopus rating (2002): SJR 1.221 SNIP 1.922
Web of Science (2002): Indexed yes

Scopus rating (2001): SJR 1.424 SNIP 1.724
Web of Science (2001): Indexed yes

Scopus rating (2000): SJR 1.102 SNIP 1.04

Scopus rating (1999): SJR 2.032 SNIP 0.99

Original language: English
DOIs:
10.1364/AO.56.007679

Relations
Projects:
Scene reassembly after multimodal digitization and pipeline evaluation using photorealistic rendering
Virtual reality inspection and painting with measured BRDFs

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Authors: Dal Corso, A. (Intern), Stets, J. D. (Intern), Luongo, A. (Intern), Nielsen, J. B. (Intern), Frisvad, J. R. (Intern), Aanæs, H. (Intern)
Number of pages: 2
Publication date: 2017

Host publication information
Title of host publication: Proceedings of SA ’17 VR Showcase
Main Research Area: Technical/natural sciences
Electronic versions:
vrbrdf.pdf
DOIs:
10.1145/3139468.3139472
Source: PublicationPreSubmission
Source-ID: 140110400
Publication: Research - peer-review › Article in proceedings – Annual report year: 2017

Interactive Appearance Prediction for Cloudy Beverages
Juice appearance is important to consumers, so digital juice with a slider that varies a production parameter or changes juice content is useful. It is however challenging to render juice with scattering particles quickly and accurately. As a case study, we create an appearance model that provides the optical properties needed for rendering of unfiltered apple juice. This is a scattering medium that requires volume path tracing as the scattering is too much for single scattering techniques and too little for subsurface scattering techniques. We investigate techniques to provide a progressive interactive appearance prediction tool for this type of medium. Our renderings are validated by qualitative and quantitative comparison with photographs. Visual comparisons using our interactive tool enable us to estimate the apple particle concentration of a photographed apple juice.

General information
State: Published
Organisations: IT Service, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Alexandra Institute
Authors: Dal Corso, A. (Intern), Frisvad, J. R. (Intern), Kjeldsen, T. K. (Ekstern), Bærentzen, J. A. (Intern)
Number of pages: 4
Publication date: 2016

Host publication information
Title of host publication: MAM2016: Eurographics Workshop on Material Appearance Modeling
Main Research Area: Technical/natural sciences
Electronic versions:
juice.pdf
DOIs:
10.2312/mam.20161247
Source: PublicationPreSubmission
Source-ID: 125070747
Publication: Research - peer-review › Article in proceedings – Annual report year: 2016
Interactive directional subsurface scattering and transport of emergent light

Existing techniques for interactive rendering of deformable translucent objects can accurately compute diffuse but not directional subsurface scattering effects. It is currently a common practice to gain efficiency by storing maps of transmitted irradiance. This is, however, not efficient if we need to store elements of irradiance from specific directions. To include changes in subsurface scattering due to changes in the direction of the incident light, we instead sample incident radiance and store scattered radiosity. This enables us to accommodate not only the common distance-based analytical models for subsurface scattering but also directional models. In addition, our method enables easy extraction of virtual point lights for transporting emergent light to the rest of the scene. Our method requires neither preprocessing nor texture parameterization of the translucent objects. To build our maps of scattered radiosity, we progressively render the model from different directions using an importance sampling pattern based on the optical properties of the material. We obtain interactive frame rates, our subsurface scattering results are close to ground truth, and our technique is the first to include interactive transport of emergent light from deformable translucent objects.

General information
State: Published
Organisations: IT Service, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Alexandra Instituttet A/S
Authors: Dal Corso, A. (Intern), Frisvad, J. R. (Intern), Mosegaard, J. (Forskerdatabase), Bærentzen, J. A. (Intern)
Pages: 371–383
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Visual Computer
Volume: 33
Issue number: 3
ISSN (Print): 0178-2789
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.62 SJR 0.536 SNIP 1.061
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.472 SNIP 1.037 CiteScore 1.24
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.398 SNIP 1.039 CiteScore 1.21
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.492 SNIP 1.136 CiteScore 1.43
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.333 SNIP 1.232 CiteScore 1.08
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.339 SNIP 1.065 CiteScore 1.2
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.306 SNIP 1.326
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.384 SNIP 1.525
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.432 SNIP 1.234
Scopus rating (2007): SJR 0.387 SNIP 1.048
Scopus rating (2006): SJR 0.316 SNIP 1.089
Scopus rating (2005): SJR 0.299 SNIP 1.202
Scopus rating (2004): SJR 0.221 SNIP 1.133
VirtualTable: a projection augmented reality game

VirtualTable is a projection augmented reality installation where users are engaged in an interactive tower defense game. The installation runs continuously and is designed to attract people to a table, which the game is projected onto. Any number of players can join the game for an optional period of time. The goal is to prevent the virtual stylized soot balls, spawning on one side of the table, from reaching the cheese. To stop them, the players can place any kind of object on the table, that then will become part of the game. Depending on the object, it will become either a wall, an obstacle for the soot balls, or a tower, that eliminates them within a physical range. The number of enemies is dependent on the number of objects in the field, forcing the players to use strategy and collaboration and not the sheer number of objects to win the game.

General information
State: Published
Organisations: IT Service, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Mathematics, Statistics and Data Analysis
Number of pages: 1
Publication date: 2015

Host publication information
Title of host publication: Proceedings of SIGGRAPH Asia 2015 Posters
Publisher: Association for Computing Machinery
Article number: 40
ISBN (Print): 978-1-4503-3926-1
BFI conference series: International Conference on Computer Graphics and Interactive Techniques (5000583)
Main Research Area: Technical/natural sciences
Electronic versions:
Projects:

Hybrid Techniques for Interactive Photorealistic Rendering

Technical University of Denmark
Period: 01/10/2014 → 01/04/2018
Number of participants: 3
Phd Student:
Dal Corso, Alessandro (Intern)
Supervisor:
Bærentzen, Jakob Andreas (Intern)
Main Supervisor:
Frisvad, Jeppe Revall (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)

Relations
Publications:
Towards Interactive Photorealistic Rendering
Project: PhD