Bifurcations of a creeping air–water flow in a conical container
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height H and cone half-angle α vary, numerous flow metamorphoses occur. They are investigated for H/α, and α. For small H/α, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as H/α exceeds a threshold depending on α. For all α, the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.
Patterns of a slow air-water flow in a semispherical container
This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, H_w, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom intersection. Then this eddy expands and reaches the interface, inducing a new cell in the air flow. This cell appears as a thin near-axis layer which then expands and occupies the entire air domain. As the disk rotation intensifies at $H_w = 0.8$, the new air cell shrinks to the axis and disappears. The bulk water circulation becomes separated from the interface by a thin layer of water counter-circulation. These changes in the flow topology occur due to (a) competing effects of the air meridional flow and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Office for Study Programmes and Student Affairs, Universidad de Sevilla, Shtern Research and Consulting
Authors: Balci, A. (Intern), Brøns, M. (Intern), Herrada, M. A. (Ekstern), Shtern, V. N. (Ekstern)
Pages: 1-8
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: European Journal of Mechanics B - Fluids
Volume: 58
ISSN (Print): 0997-7546
Ratings:
BFI (2018): BFI-level 2
Topological Fluid Dynamics For Free and Viscous Surfaces

In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given expansion point. Applying the boundary conditions, some relations are obtained among the coefficients of the expansions. Series of coordinate transformations, which preserves the boundary conditions, are used to reduce the number of coefficients. Finally, using the normal form and unfolding theory, the velocity field is analysed structurally and bifurcation diagrams are obtained.

First, two-dimensional viscous flow close to wall for non-simple degenerate critical point is considered depending on three-parameter space. Second, three-dimensional axisymmetric, viscous and steady flow is analysed close to free and viscous
surfaces into three situations: Local analysis close to center axis; away from the axis and close to a stationary wall. Next, in the absence of axisymmetric condition, three-dimensional viscous flow is considered close to a free surface.

As an application of the bifurcation diagrams for three-dimensional axisymmetric viscous flow, three different shaped container driven by a rotating top disk is considered. Using a spectral collocation method, a code is constructed to obtain the meridional and swirl velocities. In a result of this code, all structural changes on the streamline patterns are observed and the occurring bifurcations are determined. These bifurcations are compared with the bifurcations obtained from topologically.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics
Authors: Balci, A. (Intern), Brøns, M. (Intern)
Number of pages: 194
Publication date: 2016

Publication information
Place of publication: Kgs. Lyngby
Publisher: Technical University of Denmark (DTU)
Original language: English

Series: DTU Compute PHD-2015
Number: 379
ISSN: 0909-3192
Main Research Area: Technical/natural sciences

Electronic versions:
phd379_Balci_A.pdf
Publication: Research › Ph.D. thesis – Annual report year: 2016

Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption
A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall. This vorticity may organize itself into vortices that erupt from the separated boundary layer. We study how the eruption process in terms of the streamline topology is initiated and varies in dependence of the Reynolds number Re. We show that vortex structures are created in the boundary layer for Re around 600, but that these disappear again without eruption unless Re > 1000. The eruption process is topologically unaltered for Re up to 5000. Using bifurcation theory, we obtain a topological phase space for the eruption process, which can account for all observed changes in the Reynolds number range we consider. The bifurcation diagram complements previously analyzes such that the classification of topological bifurcations of flows close to no-slip walls with up to three parameters is now complete.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Roskilde University, Monash University
Authors: Balci, A. (Intern), Andersen, M. (Intern), Thompson, M. C. (Ekstern), Brøns, M. (Intern)
Number of pages: 14
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Physics of Fluids
Volume: 27
Issue number: 5
Article number: 053603
ISSN (Print): 1070-6631
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.16 SJR 1.29 SNIP 1.291
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.366 SNIP 1.278
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.354 SNIP 1.348
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.42 SNIP 1.395
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.215 SNIP 1.356
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.445 SNIP 1.474
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.38 SNIP 1.388
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.64 SNIP 1.36
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.776 SNIP 1.362
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.72 SNIP 1.362
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.961 SNIP 1.497
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.044 SNIP 1.571
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.043 SNIP 1.681
Scopus rating (2003): SJR 2.177 SNIP 1.5
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.434 SNIP 1.696
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.983 SNIP 1.585
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.724 SNIP 1.434
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.585 SNIP 1.272

Original language: English
Bifurcation (mathematics), Phase space methods, Reynolds number, Topology, Vortex flow, Vorticity, Bifurcation diagram, Bifurcation theory, Separated boundary layers, Streamline pattern, Streamline topology, Topological description, Topological phase, Vortex structures, Boundary layers

Electronic versions:
postprint.pdf
DOIs:
10.1063/1.4921527
Source: FindIt
Source-ID: 275164710
Publication: Research - peer-review › Journal article – Annual report year: 2015
Vortex breakdown in a truncated conical bioreactor

This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H_w, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At $\alpha = 60^\circ$, the flow topology changes eighteen times as H_w varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H_w, the AMF effect dominates. As H_w increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Universidad de Sevilla, Shtern Research and Consulting
Authors: Balci, A. (Intern), Brøns, M. (Intern), Herrada, M. A. (Ekstern), Shtern, V. N. (Ekstern)
Number of pages: 26
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Fluid Dynamics Research
Volume: 47
Issue number: 6
Article number: 065503
ISSN (Print): 0169-5983
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.426 SNIP 0.67 CiteScore 0.74
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.607 SNIP 0.696 CiteScore 0.86
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.571 SNIP 0.954 CiteScore 0.92
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.478 SNIP 0.689 CiteScore 0.71
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.503 SNIP 0.65 CiteScore 0.79
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.684 SNIP 1.102 CiteScore 1.17
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.58 SNIP 1.154
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.68 SNIP 1.165
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.797 SNIP 1.409
Scopus rating (2007): SJR 0.784 SNIP 1.034
Scopus rating (2006): SJR 0.638 SNIP 1.122
Scopus rating (2005): SJR 0.743 SNIP 0.979
Projects:

Topological fluid dynamics: Symmetry breaking and fluid interfaces

Technical University of Denmark
Period: 01/09/2012 → 19/11/2015
Number of participants: 5
Phd Student:
Balci, Adnan (Intern)
Main Supervisor:
Brøns, Morten (Intern)
Examiner:
Henriksen, Christian (Intern)
Blackmore, Denis (Ekstern)
Hartnack, Johan Nicolai (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Stipendie fra udlandet
Project: PhD