Centre for oil and gas – DTU - DTU Orbit (15/02/2018)

Centre for oil and gas – DTU

Center
Short name: DHRTC

Addresses
Type of address: Postal address
Street: Elektrovej
Building: Building 375
Postal code: 2800
City: Kgs. Lyngby
Country: Denmark

Phone numbers
Phone: (+45) 45 25 72 10

Web addresses
Web: http://www.oilgas.dtu.dk/english

E-mails
E-mail: dhrtc@dtu.dk

Organisation profile
Director: Bo Cerup-Simonsen
M: +45 21 78 94 03

In 2014, the partners in the Danish Underground Consortium (DUC) entered into an agreement on the financing of the Danish Hydrocarbon Research and Technology Centre (DHRTC), which has been established at and is operated from Technical University of Denmark (DTU).

For DHRTC, the aim is to demonstrate how the recovery of oil and gas can be increased in the Danish part of the North Sea on a commercial basis. Specifically, the aim is to demonstrate an increased recovery of oil and gas of 100 MMBOE in 2020. The centre's work involves close collaboration between research and engineering on coming up with innovative solutions to the challenges in the North Sea. This is done through research and partnerships across universities and in interaction with the industry.

Permanently based at DTU, the team is already busily involved in the collaboration with the partner institutions, University of Copenhagen, Aarhus University, Aalborg University and the Geological Survey of Greenland and Denmark (GEUS). In addition, efforts are being made to establish cross-disciplinary partnerships with foreign institutions and private enterprises with a view to conducting research into and developing new technologies for recovering a larger share of Denmark's oil and gas from the North Sea.

DHRTC is a global centre from which researchers can access important data and knowledge about the oil fields, and our research programmes are orchestrated from the centre in partnership with research groups from our partner institutions. The aim of DHRTC at DTU is to ensure that all our efforts are finely coordinated across fields of research and professions, across departmental boundaries and—in the long term—across national borders as well.

The aim over the next four years is to identify and develop a number of large demonstration models, each addressing a potential for increasing Danish oil recovery and demonstrating how much oil and gas the models will be able to deliver.

Organisational unit: Center

Publications:

A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mechanical deformation model. A robust contact model is utilised to resolve the contact tractions between opposing fracture surfaces under THM loadings. A numerical model has been developed using the standard Galerkin method. Quadratic tetrahedral and triangular elements are used for spatial discretisation. The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems.

Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix is very likely. The fluid exchanges heat with the rock matrix, which results in cooling down of the matrix, and subsequent volumetric
deformation. The cooling down of the rock matrix around a fracture reduces the contact stress on the fracture surfaces, and increases the fracture aperture. Stress redistribution reduces the aperture, as the area with lower contact stress on the fracture expands. Stress redistribution reduces the likelihood of fracture propagation under pure opening mode, while the expansion of the area with lower contact stress may increase the likelihood of shear fracturing.
Fracture mechanics approach to optimize inspection planning of offshore welds for wind turbines

General information
State: Published
Organisations: Department of Wind Energy, Wind Turbine Structures and Component Design, Department of Mechanical Engineering, Solid Mechanics, Centre for oil and gas – DTU, Technical University of Denmark
Authors: Ruiz-Munoz, G. (Ekstern), Stolpe, M. (Intern), Sørensen, J. D. (Intern), Niordson, C. F. (Intern), Eder, M. A. (Intern), Østergaard, T. (Ekstern)
Number of pages: 41
Publication date: 2018

Publication information
Publisher: Technical University of Denmark (DTU)
Original language: English
Main Research Area: Technical/natural sciences
Electronic versions:
Gustavo_Dissertation.pdf
DOIs:
10.11581/DTU:00000031

Relations
Projects:
Fracture mechanics approach to optimize inspection planning of offshore welds for wind turbines
Publication: Research › Ph.D. thesis – Annual report year: 2018

Heat Recovery from Multiple-Fracture Enhanced Geothermal Systems: The Effect of Thermoelastic Fracture Interactions
This study investigates the effect of thermoelastic interactions between multiple parallel fractures on energy production from a multiple-fracture enhanced geothermal system. A coupled thermo-hydro-mechanical finite element model has been developed that accounts for non-isothermal fluid flow within the fractures, conductive heat transfer in the rock matrix, and the mechanical deformation of the matrix. The model results show that the matrix deformation significantly increases the interactions between the two adjacent fractures. Matrix contraction due to the cooling of the matrix increases the fracture aperture in the adjacent fracture, and facilitates the creation of favourable flow pathways between the injection and production wells. These flow paths reduce the energy production from the system. The effects of fracture spacing, reservoir temperature gradient and mechanical properties of the rock matrix on the production temperature and the net production energy are investigated. It is shown that the spacing calculated based on the assumption of rigid matrix (constant uniform aperture) are too small, and in order to account for the thermoelastic interactions, the spacing between fractures should be further increased to maximise the net energy production from the system. Otherwise, the multiple-fracture system fails to improve the energy recovery from the geothermal reservoir, as initially intended.

General information
State: Accepted/In press
Organisations: Centre for oil and gas – DTU, Technical University of Denmark
Authors: Vik, H. S. (Ekstern), Salimzadeh, S. (Intern), Nick, H. (Intern)
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Renewable Energy
ISSN (Print): 0960-1481
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Synergy potential for oil and geothermal energy exploitation

A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources, both for thermally enhanced oil recovery from a heavy oil reservoir and for direct heating purposes. A single phase non-isothermal fluid flow modeling for geothermal doublet
system and a two-phase non-isothermal fluid flow modelling for water flooding in an oil reservoir are utilised. Sensitivity and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature. Our results show that total oil production strongly depends on the shape of heat plume which can be affected by porosity, permeability, injection temperature, well spacing and injection rate in the oil reservoir. The favourable oil recovery obtains at high amount of (a) injection rate, (b) injection temperature, (c) porosity and (d) low amount of oil reservoir permeability respectively. Furthermore, our study indicates the wellbore spacing plays an important role in oil recovery and an optimum wellbore spacing can be established. The analyses suggest that the extra amount of oil produced by utilising the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Delft University of Technology
Authors: Ziabakhsh-Ganji, Z. (Ekstern), Nick, H. M. (Intern), Donselaar, M. E. (Ekstern), Bruhn, D. F. (Ekstern)
Number of pages: 15
Pages: 1433-1447
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Energy
Volume: 212
ISSN (Print): 0306-2619
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.058 SNIP 2.573
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.912 SNIP 2.61 CiteScore 6.4
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 3.254 SNIP 3.28 CiteScore 6.93
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 3.164 SNIP 3.377 CiteScore 6.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.854 SNIP 3.108 CiteScore 5.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.473 SNIP 2.84 CiteScore 5.5
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.516 SNIP 2.25
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.003 SNIP 1.781
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Thermoporoelastic effects during heat extraction from low-permeability reservoirs

Thermoporoelastic effects during heat extraction from low permeability geothermal reservoirs are investigated numerically, based on the model of a horizontal penny-shaped fracture intersected by an injection well and a production well. A coupled formulation for thermo-hydraulic (TH) processes is presented that implicitly accounts for the mechanical deformation of the poroelastic matrix. The TH model is coupled to a separate mechanical contact model (M) that solves for the fracture contact stresses due to thermoporoelastic compression. Fractures are modelled as surface discontinuities within a three-dimensional matrix. A robust contact model is utilised to resolve the contact tractions between opposing fracture surfaces. Results show that due to the very low thermal diffusivity of the rock matrix, the thermally-induced pore pressure partially dissipates even in the very low-permeability rocks that are found in EGS projects. Therefore, using the undrained thermal expansion coefficient for the matrix may overestimate the volumetric strain of the rock in low-permeability enhanced geothermal systems, whereas using a drained thermal expansion coefficient for the matrix may underestimate the volumetric strain of the rock. An effective thermal expansion coefficient can be computed from the drained and undrained values to improve the prediction for the partially-drained matrix.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Imperial College London
Authors: Salimzadeh, S. (Intern), Nick, H. M. (Intern), Zimmerman, R. W. (Ekstern)
Number of pages: 13
Pages: 546-558
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Energy
Volume: 142
ISSN (Print): 0360-5442
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.999 SNIP 1.798
Web of Science (2016): Indexed yes
METHOD OF MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A TEXTILE FABRIC ASSEMBLY
The invention relates to a textile fabric assembly (1) comprising at least two textile layers (2). The textile layers (2) are joined at a plurality of points (3) and/or along a plurality of lines (6) so that they form inner and outer walls, respectively. The invention also relates to a method of manufacturing a composite structure (10). The method may comprise providing a form (8) that has a shape corresponding to a desired shape of an internal cavity in the composite structure (10) to be manufactured. The textile fabric assembly (1) is arranged around the form (8), and a curable material (9) is filled into the at least one inner space (4) between the textile layers (2). The form (8) may be inflatable. Alternatively, the method may comprise arranging the textile fabric assembly (1) around an initial structure and/or mechanically fastened to a surface of...
an initial structure to be reinforced and then filling it with a curable material (9).

General information
State: Published
Organisations: Department of Civil Engineering, Section for Structural Engineering, Centre for oil and gas – DTU
Authors: Fischer, G. (Intern)
Publication date: 14 Jun 2017

Publication information
IPC: E04C 5/07 A I
Patent number: EP3178643
Date: 14/06/2017
Priority date: 10/12/2015
Priority number: EP20150199307
Original language: English
Electronic versions:
Main Research Area: Technical/natural sciences
Source: espacenet
Source-ID: EP3178643
Publication: Research › Patent – Annual report year: 2017

A case hardened component of titanium
The present invention relates to a case hardened component of a titanium alloy, the component having a diffusion zone of a thickness of at least 50 μm, as calculated from the surface of the component, the diffusion zone comprising oxygen and carbon in solid solution and having a distinct phase of a carbo-oxide compound having the composition TiOxC1-x, wherein x is a number in the range of 0.01 to 0.99, which diffusion zone has a microhardness of at least 800 HV0.025 and which carbo-oxide compound has a microhardness of at least 1200 HV0.025. In another aspect the invention relates to a method of producing the case hardened component. In a further aspect the invention relates to a method of oxidising a component of a Group IV metal.

General information
State: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Centre for oil and gas – DTU, Technical University of Denmark
Authors: Christiansen, T. L. (Intern), Jellesen, M. S. (Intern), Somers, M. A. J. (Intern), Gammeltoft-Hansen, N. B. (Ekstern)
Publication date: 2 Jun 2017

Publication information
IPC: C23C8/34
Patent number: WO2017207794
Date: 07/12/2017
Priority date: 02/06/2016
Priority number: EP20160172699
Original language: English
Main Research Area: Technical/natural sciences
Publication: Research › Patent – Annual report year: 2017

Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties
Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of
their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone-substituting biomaterials.

Statement of Significance
Bone-substituting biomaterials aim to mimic bone properties. Although mimicking some of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass transport properties. The topology of the developed biomaterials resembles that of trabecular bone including a mean curvature close to zero. Moreover, the developed biomaterials show an unusual combination of low elastic modulus to avoid stress shielding and high strength to provide mechanical support. The fatigue resistance of the developed biomaterials is also exceptionally high, while their permeability is in the range of values reported for bone. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
An evaluation of interferences in heat production from low enthalpy geothermal doublet systems

Required distance between doublet systems in low enthalpy geothermal heat exploitation is often not fully elucidated. The required distance aims to prevent negative interference influencing the utilisation efficiency of doublet systems. Currently production licence areas are often issued based on the expected extent of the reinjected cold water plume on the moment of thermal breakthrough. The production temperature, however, may not immediately drop to non-economic values after this moment. Consequently, heat production could continue increasing the extent of the cold water plume. Furthermore, the area influenced by pressure because of injection and production spreads beyond the cold water plume extent, influencing not only the productivity of adjacent doublet systems but also the shape of cold water plumes. This affects doublet life time, especially if adjacent doublets have different production rates. In this modelling based study a multi parameter analysis is carried out to derive dimensionless relations between basic doublet design parameters and required doublet distance. These parameters include the spacing between injector and producer of the same doublet, different production rates, aquifer thickness and minimal required production temperature. The results of this study can be used to minimize negative interference or optimise positive interference aiming at improving geothermal doublet deployment efficiency. (C) 2017 The Authors. Published by Elsevier Ltd.
An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks

Fluid flow in naturally fractured reservoirs is often controlled by subseismic-scale fracture networks. Although the fracture network can be partly sampled in the direct vicinity of wells, the inter-well scale network is poorly constrained in fractured reservoir models. Outcrop analogues can provide data for populating domains of the reservoir model where no direct measurements are available. However, extracting relevant statistics from large outcrops representative of inter-well scale fracture networks remains challenging. Recent advances in outcrop imaging provide high-resolution datasets that can cover areas of several hundred by several hundred meters, i.e. the domain between adjacent wells, but even then, data from the high-resolution models is often upscaled to reservoir flow grids, resulting in loss of accuracy. We present a workflow that uses photorealistic georeferenced outcrop models to construct geomechanical and fluid flow models containing thousands of discrete fractures covering sufficiently large areas, that does not require upscaling to model permeability. This workflow seamlessly integrates geomechanical Finite Element models with flow models that take into account stress-sensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix permeabilities shows that conventional upscaling to effective grid properties leads to potential underestimation of the true permeability and the orientation of principal permeabilities. The presented workflow yields the full permeability tensor model of discrete fracture networks with stress-induced apertures, instead of relying on effective properties as most conventional flow models do.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Delft University of Technology
Authors: Bisdom, K. (Ekstern), Nick, H. (Intern), Bertotti, G. (Ekstern)
Number of pages: 15
Pages: 21-35
Publication date: 2017
Applying LCA in decision making- the need and the future perspective

General information
State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Department of Civil Engineering, Centre for oil and gas – DTU, Transport DTU, Transport Modelling, Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Department of Environmental Engineering, Urban Water Systems, National Food Institute, Research Group for Genomic Epidemiology, Section for Structural Engineering
Authors: Dong, Y. (Intern), Miraglia, S. (Intern), Manzo, S. (Intern), Georgiadis, S. (Intern), Sørup, H. J. D. (Intern), Boriani, E. (Intern), Hald, T. (Intern), Thøns, S. (Intern), Hauschild, M. Z. (Intern)
Number of pages: 1
Publication date: 2017
Main Research Area: Technical/natural sciences
Electronic versions:
AbstraApplying_LCA_in_policy_decision_making_Final

Calibration of the NDHA N2O model via respirometric assays

General information
State: Published
Organisations: Department of Environmental Engineering, Water Technologies, Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, Centre for oil and gas – DTU, Technical University of Denmark
Authors: Domingo-Felez, C. (Intern), Calderó-Pascual, M. (Ekstern), Sin, G. (Intern), Plósz, B. G. (Intern), Smets, B. F. (Intern)
Number of pages: 4
Publication date: 2017
Event: Abstract from Frontiers International Conference on Wastewater Treatment (FICWTM2017), Palermo, Italy.
Main Research Area: Technical/natural sciences
Electronic versions:
FICWTMOD2017_Domingo_Felez_abstract.pdf

Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tube
In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission geometry measuring with a small gauge volume from the sample surface through the corrosion product allowed depth-resolved phase identification and revealed the presence of (Fe,Cr)2O3 and FeCr2O4. This was supplemented by microstructural and elemental analysis correlating the additional presence of a Ni-rich austenite phase to selective removal of Fe and Cr from the alloy, via a KCl-induced corrosion mechanism. Compositional variations were related to diffraction results and revealed a qualitative influence of the spinel cation concentration on the observed diffraction lines.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, Department of Mechanical Engineering, Materials and Surface Engineering, CHEC Research Centre, Centre for oil and gas – DTU, Helmholtz–Zentrum Berlin für Materialien und Energie
Number of pages: 14
Pages: 22–35
Publication date: 2017
Main Research Area: Technical/natural sciences
Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

The association theory-based advanced thermodynamic models have gained more and more attention and applications in many industries. The cubic plus association (CPA) and the simplified perturbed chain statistical associating fluid theory (sPC-SAFT) equations of state (EOS) are two of the most widely used association models in the chemical and petroleum industries. The CPA model is extensively used in flow assurance, in which the gas hydrate formation is one of the central topics. Experimental data play a vital role in validating models and obtaining model parameters. In this work, we will compare the performance of the CPA and sPC-SAFT EOS for modeling the fluid-phase equilibria of gas hydrate-related systems and try to explore how the models can help in suggesting experimental measurements. These systems contain water, hydrocarbon (alkane or aromatic), and either methanol or monoethylene glycol. It is well known that the determination of SAFT-type model parameters for associating fluids remains a challenge because there are at least five pure-component parameters for these compounds and there is no property combination found to be enough to ensure the best parameter set. Therefore, in this work two parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons are made for pure fluid properties, vapor liquid-equilibria, and liquid liquid equilibria of binary and ternary mixtures as well as vapor liquid liquid equilibria of quaternary mixtures. The results show, from an overall point of view, that these two models have equally good performance, and the two parameter sets with the sPC-SAFT EOS are also comparable, especially for the vapor liquid equilibria systems. Moreover, the modeling results suggest that some data are less reliable than others, which indicates the need for more measurements to further validate the models, especially for multicomponent systems.
Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor

The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a
mathematical model that describes the dynamics of SCP production in a U-loop reactor. We use this model to compute an optimal start-up trajectory by solution of an economic optimizing optimal control problem. The optimal start-up trajectory is an unstable attractor. The practical implementation of this optimal start-up trajectory can be conducted by a proportional controller for the substrate concentration in the top tank of the U-loop reactor.

Effect of Foam on Liquid Phase Mobility in Porous Media
We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.
Effect of Poroelasticity on Hydraulic Fracture Interactions

This study investigates, by performing finite element-based simulations, the influence of fluid leak-off and poroelasticity on growth of multiple hydraulic fractures that initiate from a single horizontal well. In this research, poroelastic deformation of the matrix is coupled with fluid flow in the fractures, and fluid flow in the rock matrix, in three dimensions. Effects of the fluid leakoff and poroelasticity on the propagation of the neighboring fractures are studied by varying the matrix permeability, and the Biot coefficient. Simulation results show that the stress induced by the opening of the fractures, and the stress induced by the fluid leak-off, each have the effect of locally altering the magnitudes and orientations of the principal stresses, hence altering the propagation direction of the fractures. The stress induced by the opening of the fractures tends to propagate both of the fractures away from each other in a curved trajectory, whereas the effects of fluid leak-off and poroelasticity (i.e., a higher Biot coefficient) tend to straighten the curved trajectory.

Electrical Double-Layer and Ion Bridging Forces between Symmetric and Asymmetric Charged Surfaces in the Presence of Mono- and Divalent Ions

An atomic force microscope, employing the colloidal probe technique, was used to study the interactions between six different combinations of silane-functionalized silica surfaces in NaCl and CaCl₂ solutions. The surfaces consisted of monolayers of the apolar trimethoxy(octyl)silane, the positively charged (3-aminopropyl)trimethoxysilane, and the negatively charged (3-mercaptopropyl)trimethoxysilane. The interactions between the three symmetric systems, as well as
between the three asymmetric combinations of surfaces, were measured and compared to calculated electrical double-layer forces. The results demonstrated that the long-range interactions between the surfaces in all cases were dominated by double-layer forces, while short-range interactions, including adhesion, were dominated by ion bridging forces in the cases where both interaction surfaces favored adsorption of calcium ions. The study thus also demonstrates how surface force studies in mono- and divalent salt solutions can be used as an analytical tool for probing specific functional groups on heterogeneous surfaces.

General information

State: Published

Organisations: Department of Chemistry, Centre for oil and gas – DTU, Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources Engineering

Authors: Liu, X. (Intern), Feilberg, K. L. (Intern), Yan, W. (Intern), Stenby, E. H. (Intern), Thormann, E. (Intern)

Number of pages: 9

Pages: 4426-4434

Publication date: 2017

Main Research Area: Technical/natural sciences

Publication information

Journal: Langmuir

Volume: 33

Issue number: 18

ISSN (Print): 0743-7463

Ratings:

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 2

Web of Science (2017): Indexed Yes

BFI (2016): BFI-level 2

Scopus rating (2016): CiteScore 3.99 SJR 1.55 SNIP 1.188

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 2

Scopus rating (2015): SJR 1.686 SNIP 1.308 CiteScore 4.33

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 2

Scopus rating (2014): SJR 1.816 SNIP 1.391 CiteScore 4.59

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 2

Scopus rating (2013): SJR 1.895 SNIP 1.356 CiteScore 4.55

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes

BFI (2012): BFI-level 2

Scopus rating (2012): SJR 2.177 SNIP 1.382 CiteScore 4.37

ISI indexed (2012): ISI indexed yes

Web of Science (2012): Indexed yes

BFI (2011): BFI-level 2

Scopus rating (2011): SJR 2.051 SNIP 1.357 CiteScore 4.42

ISI indexed (2011): ISI indexed yes

Web of Science (2011): Indexed yes

BFI (2010): BFI-level 2

Scopus rating (2010): SJR 2.148 SNIP 1.4

Web of Science (2010): Indexed yes

BFI (2009): BFI-level 2

Scopus rating (2009): SJR 2.156 SNIP 1.351

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 1

Scopus rating (2008): SJR 2.383 SNIP 1.34

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 2.449 SNIP 1.434
Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal

Recent studies have shown that by coupling the underground coal gasification (UCG) with the carbon capture and storage (CCS), the coal energy can be economically extracted with a low carbon footprint. To investigate the effect of UCG and CCS process parameters on the feasibility of the UCG-CCS process, we utilize a validated mathematical model, previously published by the same authors, that can predict the composition of the UCG product, temperature profile, and coal conversion rate for alternating injection of air and steam for unmineable deep thin coal layers. We use the results of the model to conduct an energy and exergy analysis of the UCG process. We study the effect of various process parameters on the efficiency of the UCG process, the zero-emission recovery factor of coal, and the total CO₂ emission of the process. Moreover, we compare the alternating injection of air/steam with the injection of an air and steam mixture. Exergy analysis shows that the alternating injection of air/steam describes a practical process for UCG at low pressure. However, injecting a mixture of steam and oxygen results in a practical recovery factor of coal higher than the alternating injection process. Additionally, we show that the zero-emission conversion of unmineable deep thin coal resources in a coupled UCG-CCS process, that is not practical with the current state of technology, can be realized by increasing the energy efficiency of the carbon dioxide capture process.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Delft University of Technology, Central Mining Institute
Authors: Eftekhari, A. A. (Intern), Wolf, K. H. (Ekstern), Rogut, J. (Ekstern), Bruining, H. (Ekstern)
Number of pages: 10
Pages: 62-71
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Energy
Volume: 208
ISSN (Print): 0306-2819
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.058 SNIP 2.573
Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device

A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and arrest of the crack. Digital image correlation is used through the...
duration of the fatigue experiment to track the strain evolution as the crack tip advances. The measured strains are related
to crack tip propagation, arrest, and re-initiation of the crack. A finite element model is used to calculate the energy release
rate, mode mixity and to simulate crack propagation and arrest of the crack. Finally, the effectiveness of the crack
arresting device is demonstrated on composite sandwich beams subjected to fatigue loading conditions.
Experimental study of strain prediction on wave induced structures using modal decomposition and quasi static Ritz vectors

Offshore structures are continuously subjected to dynamic loading from wind and waves which makes fatigue an important parameter for the structures expected lifetime. Monitoring the vibrations of the structure using real time operating data enables an assessment of the general health state of the structure. This paper proposes a method for an accurate full-field prediction of the strain history. Experimental mode shapes are found by the use of operational modal analysis and expanded to strain modes using a well correlated finite element model. The measured response from the structure is divided into two parts using complementary filters: Low frequency response caused by the quasi-static effect of the waves acting on the structure, and the high frequency response given by the modal properties of the structure. The high frequency response is then decomposed into modal coordinates using the experimental mode shapes. Strain histories are predicted by multiplying the modal coordinates with the expanded strain mode shapes. The low frequency response is decomposed using Ritz-vectors corresponding to the shapes that the structure vibrates with due to the wave loading. Strain Ritz-vectors are then extracted from the finite element model by applying a load corresponding to a representative wave and the strain history for the low frequency response is found by multiplying the decomposed signal with the strain Ritz-vectors. Finally the combined strain history is found by adding the strain histories from the low and high frequency responses. To validate the theory tests were performed on a scaled model of an offshore structure where the strain history was predicted using only the response from the accelerometers.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Aarhus University, Ramboll Oil and Gas
Authors: Skafte, A. (Ekstern), Kristoffersen, J. (Ekstern), Vestermark, J. (Ekstern), Tygesen, U. T. (Ekstern), Brincker, R. (Intern)
Number of pages: 16
Pages: 261-276
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Engineering Structures
Volume: 136
ISSN (Print): 0141-0296
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.93 SJR 1.578 SNIP 2.048
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.696 SNIP 2.195 CiteScore 2.59
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.756 SNIP 2.56 CiteScore 2.4
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.049 SNIP 2.853 CiteScore 2.69
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock

A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow within the fracture and rock matrix, poroelastic deformation, propagation of the fractures, and fluid leakage into the rock formation. The model is validated against available asymptotic analytical solutions for penny-shaped fractures, in the viscosity-dominated, toughness-dominated, storage-dominated, and leakoff-dominated regimes. However, for intermediate regimes, these analytical solutions cannot be used to predict the key hydraulic fracturing variables, i.e. injection pressure, fracture aperture, and length. For leakoff-dominated cases in permeable rocks, the asymptotic solutions fail to accurately predict the lower-bound for fracture radius and apertures, and the upper-bound for fracture pressure. This is due to the poroelastic effects in the dilated rock matrix, as well as due to the multi-dimensional flow within matrix, which in many simulation codes is idealised as being one-dimensional, normal to the fracture plane.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Imperial College London
Authors: Salimzadeh, S. (Intern), Usui, T. (Ekstern), Paluszny, A. (Ekstern), Zimmerman, R. W. (Ekstern)
Pages: 9-20
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Volume: 99
ISSN (Print): 0148-9062
Including product features in process redesign

This article suggests a visual modelling method for integrating models of product features with business process models for redesigning the business processes involving specifications of customer-tailored products and services. The current methods for redesigning these types of business processes do not take into account how the product features are applied throughout the process, which makes it difficult to obtain a comprehensive understanding of the activities in the processes and to generate significant improvements. The suggested approach models the product family using the so-called product variant master and the business process modelling notation for modelling the process flow. The product model is combined with the process map by identifying features used in each step of the process flow. Additionally, based on the information absorbed from the integrated model, the value stream mapping modelling technique is applied to the specification process to evaluate its performance in quantifiable terms. The proposed modelling approach was investigated through three case studies. Experiences from the case studies were that the suggested modelling techniques gave additional insight into the specification processes and formed a good basis for process improvement. Furthermore, the case studies indicated that the suggested modelling techniques were applicable and easy to use.
In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin²ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200γ reflection.

General information
State: Accepted/In press
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Centre for oil and gas – DTU
Authors: Villa, M. (Intern), Niessen, F. (Intern), Somers, M. A. J. (Intern)
Pages: 1-13
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
ISSN (Print): 1073-5623
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.91 SJR 1.179 SNIP 1.179
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.231 SNIP 1.332 CiteScore 1.78
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.671 SNIP 1.877 CiteScore 2.06
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.481 SNIP 1.63 CiteScore 1.9
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.419 SNIP 1.706 CiteScore 1.76
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.508 SNIP 1.703 CiteScore 1.78
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.688 SNIP 1.802
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.608 SNIP 1.53
Web of Science (2009): Indexed yes
Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min⁻¹ applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated by a temperature region in which the transformation was strongly decelerated. The region of limited transformation was more concise and occurred at higher austenite phase fractions and temperatures for higher heating rates. The two-step kinetics was reproduced by kinetics modeling in DICTRA. The model indicates that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Department of Mechanical Engineering, Materials and Surface Engineering
Authors: Nießen, F. (Intern), Villa, M. (Intern), Hald, J. (Intern), Somers, M. A. J. (Intern)
Number of pages: 8
Pages: 8-15
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Materials & Design
Volume: 116
ISSN (Print): 0264-1275
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.9 SJR 1.751 SNIP 2.481
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel

The kinetics model for multi-component diffusion DICTRA was applied to analyze the formation and retainment of δ-ferrite during solidification and cooling of GX4-CrNiMo-16-5-1 cast supermartensitic stainless steel. The obtained results were compared with results from the Schaeffler diagram, equilibrium calculations and the Scheil model in Thermo-Calc, and validated by using microscopy and energy dispersive X-ray spectroscopy for chemical analysis on a cast ingot. The kinetics model showed that micro-segregation from solidification homogenizes within 2–3 s (70 °C) of cooling, and that retained δ-ferrite originates from the incomplete transformation to austenite. The kinetics model predicted the measured amount of δ-ferrite and the partitioning of Cr and Ni reasonably well. Further, it showed that slower cooling for the investigated alloy leads to less retained δ-ferrite, which is in excellent agreement with experimental results.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Department of Mechanical Engineering, Manufacturing Engineering, Materials and Surface Engineering
Authors: Nießen, F. (Intern), Tiedje, N. S. (Intern), Hald, J. (Intern)
Pages: 138-145
Casting, Delta ferrite, Diffusion, Kinetics modeling, Solid state transformation, Solidification, Supermartensitic stainless steel
Modal participation in multiple input Ibrahim time domain identification

General information
State: Accepted/In press
Organisations: Department of Civil Engineering, Section for Structural Engineering, Centre for oil and gas – DTU, Aarhus University, University College Dublin, Semnan University
Authors: Brincker, R. (Intern), Olsen, P. (Ekstern), Amador, S. (Intern), Juul, M. (Ekstern), Malekjafarian, A. (Ekstern), Ashory, M. (Ekstern)
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Mathematics and Mechanics of Solids
ISSN (Print): 1741-3028
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2016): CiteScore 1.6 SJR 0.998 SNIP 1.036
Scopus rating (2015): CiteScore 1.03 SNIP 0.912 SJR 0.619
Scopus rating (2014): CiteScore 0.87 SNIP 0.785 SJR 0.662
Scopus rating (2013): CiteScore 0.81 SNIP 0.732 SJR 0.514
Scopus rating (2012): CiteScore 0.99 SNIP 1.2 SJR 0.825
Scopus rating (2011): CiteScore 1 SNIP 1.305 SJR 0.849
Scopus rating (2010): SNIP 1.022 SJR 0.778
Scopus rating (2009): SNIP 0.825 SJR 0.631
Scopus rating (2008): SNIP 0.638 SJR 0.5
Scopus rating (2007): SNIP 0.845 SJR 0.68
Scopus rating (2006): SNIP 0.741 SJR 0.617
Scopus rating (2005): SNIP 1.316 SJR 1.762
Scopus rating (2004): SNIP 0.765 SJR 0.652
Scopus rating (2003): SNIP 0.712 SJR 0.639
Scopus rating (2002): SNIP 0.645 SJR 0.821
Scopus rating (2001): SNIP 1.113 SJR 0.492
Scopus rating (2000): SNIP 0.989 SJR 0.563
Scopus rating (1999): SNIP 0.878 SJR 0.838
Original language: English
Modal participation, Ibrahim time domain, Multiple-input formulation, Operational modal analysis, Closely spaced modes
DOIs:
10.1177/1081286517733034
Source: FindIt
Source-ID: 2391915504
Publication: Research - peer-review › Journal article – Annual report year: 2017

Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties
This paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The AMGe coarse spaces with approximation properties used in this work enable us to overcome the difficulties in evaluating the nonlinear coarse operators and the degradation in convergence rates that characterized previous attempts to extend FAS to algebraic multilevel hierarchies on general unstructured grids. Specifically, the AMGe technique employed in this paper allows to derive stable and accurate coarse discretizations on general unstructured grids for a large class of nonlinear partial differential equations, including saddle point problems. The approximation properties of the coarse spaces ensure that our FAS approach for general unstructured meshes leads to optimal mesh-independent convergence rates similar to those achieved by geometric FAS on a nested hierarchy of refined meshes. In the numerical results, Newton’s method and Picard iterations with state-of-the-art inner linear solvers are compared to our FAS algorithm for the solution of a nonlinear saddle point problem arising from porous media flow applications. Our approach outperforms – both in terms of number of iterations and computational time – traditional methods in all the experiments.

General information
State: Accepted/In press
Organisations: Centre for oil and gas – DTU, Portland State University, University of Texas at Austin
Nonlinear multigrid (FAS), Element-based algebraic multigrid (AMGe), Nonlinear saddle point problems, Multilevel numerical upscaling, Mixed finite element method (MFEM), Flow in porous media

DOIs:
10.1016/j.cam.2017.10.029

Source: FindIt
Source-ID: 2392593428
Publication: Research - peer-review › Journal article – Annual report year: 2017
Oma modal indication by sensitivity to added artificial noise
This paper presents a modal indicator for use in OMA identification techniques relying on the correlation function for extraction of parameters. We propose to add small amounts of artificial white Gaussian noise to the correlation function and measuring the sensitivity of the identified modes to this noise. The idea is to identify system parameters many times, each time adding a tiny amount of uncorrelated white Gaussian noise to the correlation function. Since the noise modes are more affected by the adding of tiny amounts of additional noise, than the physical modes, the variance of the estimated parameters gives an effective modal indicator.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Department of Civil Engineering, Section for Structural Engineering, Aarhus University
Authors: Juul, M. O. (Ekstern), Olsen, P. (Ekstern), Tarpø, M. (Intern), Brincker, R. (Intern)
Pages: 92-95
Publication date: 2017

On minimizing the influence of the noise tail of correlation functions in operational modal analysis
In operational modal analysis (OMA) correlation functions are used by all classical time-domain modal identification techniques that uses the impulse response function (free decays) as primary data. However, the main difference between the impulse response and the correlation functions estimated from the operational responses is that the latter present a higher noise level. This is due to statistical errors in the estimation of the correlation function and it causes random noise in the end of the function and this is called the noise tail. This noise might have significant influence on the identification results (random errors) when the noise tail is included in the identification. On the other hand, if the correlation function is truncated too much, then important information is lost. In other to minimize this error, a suitable truncation based on manual inspection of the correlation function is normally used. However, in automated OMA, an automated procedure is needed for the truncation. Based on known theoretical solutions from the literature, a model is proposed in this paper to automatically truncate the correlation function at the point where it starts to get dominated by the noise tail. The accuracy of the proposed truncation procedure is studied using a three degree of freedom simulation case.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Department of Civil Engineering, Section for Structural Engineering, Aarhus University
Authors: Tarpø, M. (Intern), Olsen, P. (Ekstern), Amador, S. (Intern), Juul, M. (Ekstern), Brincker, R. (Intern)
Pages: 1038-1043
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Procedia Engineering
Volume: 199
ISSN (Print): 1877-7058
Ratings:
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 0.74
Scopus rating (2015): CiteScore 0.56
Scopus rating (2014): CiteScore 0.53
Scopus rating (2013): CiteScore 0.4
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.28
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.45
ISI indexed (2011): ISI indexed no
Web of Science (2010): Indexed yes
Original language: English
On the connectivity anisotropy in fluvial Hot Sedimentary Aquifers and its influence on geothermal doublet performance

This study finds that the geothermal doublet layout with respect to the paleo flow direction in fluvial sedimentary reservoirs could significantly affect pump energy losses. These losses can be reduced by up to 10% if a doublet well pair is oriented parallel to the paleo flow trend compared to perpendicular. The chance that flow paths are formed perpendicular to this trend strongly depends on the net sandstone volume in the reservoir. Detailed fluvial facies architecture realisations which are used in this study, are generated with a process-based approach utilizing geological data from the Lower Cretaceous Nieuwerkerk Formation in the West Netherlands Basin. Finally, this study emphasizes the importance of detailed facies architecture modelling for the assessment of both risks and production strategies in Hot Sedimentary Aquifers.
Operational modal analysis based prediction of actual stress in an offshore structural model

In this paper the accuracy of predicting stresses directly from the operational responses is investigated. The basic approach to the stress prediction is to perform an operational modal analysis (OMA) and then applying a modal filtering to the operating response, so that the modal coordinates of all significant modes are known. Next, the experimental mode shapes are expanded using a finite element (FE) model together with the local correspondence principle to estimate the displacements in all degrees of freedom of the FE model, and strain is predicted using the strain mode shapes. The accuracy of the approach is assessed by comparing the predicted and measured strains.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Department of Civil Engineering, Section for Structural Engineering, Aarhus University, Rambøll Oil and Gas
Authors: Glindtvad Tarpø, M. (Intern), Silva Nabuco, B. (Intern), Skafte, A. (Ekstern), Kristoffersen, J. (Ekstern), Vestermark, J. (Ekstern), Diord Rescinho Amador, S. (Intern), Brincker, R. (Intern)
Number of pages: 6
Pages: 2262-2267
Publication date: 2017
Conference: X International Conference on Structural Dynamics, Rome, Italy, 10/09/2017 - 10/09/2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Procedia Engineering
Volume: 199
ISSN (Print): 1877-7058
Ratings:
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 0.74
Scopus rating (2015): CiteScore 0.56
Scopus rating (2014): CiteScore 0.53
Scopus rating (2013): CiteScore 0.4
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.28
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.45
Pore-Scale Investigation of Crude Oil/CO₂ Compositional Effects on Oil Recovery by Carbonated Water Injection

Through coreflood and micromodel studies, it has been shown that carbonated water injection (CWI) can improve oil recovery compared to conventional waterflood. However, in most early studies, either a refined oil or dead crude oil had been used, which is not representative of a real oil reservoir where the oil has significant dissolved gases. In such studies, oil swelling and oil viscosity reduction had been introduced as the main mechanisms of additional oil recovery by CWI. However, in our direct flow visualization (micro model) studies reported here, we have used live crude oil, and we have observed the formation and growth of a new gaseous phase inside the oil when it comes in contact with carbonated water (CW). The aim of this work is to visually study the effect of this phenomenon on oil recovery by CWI at pore scale. In this paper, we present the results of two high-pressure high-temperature direct flow visualization (micromodel) experiments which have been performed using a live crude oil sample. These include a tertiary (post-waterflood) and a secondary (pre-waterflood) CWI experiment performed at 2500 psia and 100 degrees F. The results of our secondary and tertiary CWI showed that CWI can improve the oil displacement and recovery compared to conventional waterflood. Although both secondary and tertiary CWI improved oil recovery significantly, the performance of CWI was better when it was injected instead of conventional waterflood (secondary) rather than after conventional waterflood (tertiary). On the basis of our study, the predominant mechanism that led to this additional oil recovery was the formation and growth of a new gaseous phase within the oil. Formation of the new phase improved the oil recovery through (i) reconnection of the trapped oil and oil displacement, (ii) creating a favorable three phase flow region with less residual oil saturation, and (iii) restricting the flow path of OAT and diverting it toward unswept areas of the porous medium. Formation of the new phase happened faster and stronger when CW was injected as secondary, and its final saturation, for a fixed period of CWI, was higher than its final saturation in tertiary CWI. We also show that the nucleation and growth of the new gaseous phase is directly proportional to the amount of hydrocarbon gas dissolved in the oil which is a function of oil properties and saturation pressure and temperature.
Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO₂ concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO₂ in oil reservoirs is appealing and can be achieved by carbonated (CO₂-enriched) water injection (CWI). So far, through several flooding experiments, the potential of carbonated water injection as an EOR scenario has been investigated. While several coreflood experiments on homogeneous cores have been performed, there is no information on the effectiveness of CWI for oil recovery and CO₂ storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO₂ storage scenario in heterogeneous oil reservoirs is essential.
Reliability analysis of offshore structures using OMA based fatigue stresses

Today, many offshore structures in the North Sea already reached their predicted lifetime. Since it is still required a huge demand of oil, it results in an important need to keep those structures in operation. The great attention concerning the lifetime of offshore platforms has trigged a need for monitoring these structures in order to gain information about their actual state and hence reduce the uncertainty and allow for more optimal decision planning regarding maintenance, repair and future inspection actions.

Throughout the lifetime, the performance of the structure can be evaluated by analyzing the deterioration process of the structure. In the offshore environment, one of the most common deterioration mechanisms is the fatigue of structural steel induced by wave loading. The deterioration formulation of a structural system subjected to fatigue is nowadays well known. However, many uncertainties may affect the accuracy of the performance evaluation. It can be mentioned mainly the uncertainties related to the materials, the uncertainty on Miner's rule and the uncertainty on the SN curve but most importantly is the uncertainty on the stress ranges induced by the wave loading.

In this paper, the mainly focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known as reliable for long time measurements. An Operational Modal Analysis (OMA) is performed and then a modal filtering of the operating response is considered, so that the modal coordinates of all significant modes are known. Next, the experimental mode shapes are expanded using a Finite Element (FE) model together with the Local Correspondence (LC) principle and the displacements can be estimated in all degrees of freedom of the FE model, allowing the stresses and strains to be obtained from the element equations. It is important to emphasize that even though the accelerations are measured in only a few points of the structure, the stress history can be calculated in any arbitrary point of the structure.

The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies.

Resilience of systems by value of information and SHM

Critical infrastructure systems such energy provision and distribution systems, transport systems and the built environment in general are subject to and sensitive to deterioration processes. Structural Health Monitoring (SHM) strategies have been increasingly employed as means to detect deterioration, facilitate timely and efficient interventions and thereby to enhance resilience of critical infrastructure. However, in specific situations, it is generally not obvious if and to what degree different SHM strategies are efficient and sufficient for enhancing the resilience of critical infrastructure systems. In response to this challenge, the present contribution puts forwards a novel approach, taking basis in the concept of value of information analysis from Bayesian pre-posterior decision analysis. Utilizing a principal model framework we show how the proposed approach is implemented with due consideration of the resilience governing characteristics and interdependencies between infrastructure systems, social/organisational systems, regulatory systems, ecological systems as well as anthropological and geological hazard systems.
Stabilization diagrams using operational modal analysis and sliding filters

This paper presents a filtering technique for doing effective operational modal analysis. The result of the filtering method is construction of stabilization diagram that clearly separates physical poles from spurious noise poles needed for unbiased fitting. A band pass filter is moved slowly over the entire frequency spectrum of the measured data, and poles in the band are identified for each new filter position. In this way all poles are identified many times, making the physical poles stand out to make them immediately identifiable. The technique is illustrated using the Time Domain Poly Reference (TDPR) system identification algorithm on simulated data.

Temperature Effects on Stiffness Moduli of Reservoir Sandstone from the Deep North Sea

We investigate effect of testing temperature on the dynamic frame stiffness of quartz-bearing North Sea sandstone from depths of 5 km. We show that at low stress levels, the rock frame stiffens with increasing temperature and we propose an explanation for the controlling mechanisms. While equilibrating to atmospheric conditions, cooling and stress release of reservoir material can induce tensional forces in the rock frame leading to ruptures of the contact cement in the weakest grain contacts. The frame stiffness hence reduces, as the ruptures are permanent. However, a fraction of the in-situ stiffness can be restored by reestablishment of reservoir stress or temperature, but only as recovery of contact between ruptures and not as re-cementation. In literature, ruptures of contact cement are denoted as micro-cracks, strictly posing a bulk term, without distinguishing effects of stress from temperature. This is unfortunate and hence, we designed a testing program with the intension of separating and quantifying effects of temperature and stress, specifically for the sandstone material subject to this study.

The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets

This paper evaluates the impact of reduction of doublet well spacing, below the current West Netherlands Basin standard of 1000 - 1500 m, on the Net Present Value (NPV) and the life time of fluvial Hot Sedimentary Aquifer (HSA) doublets.
First, a sensitivity analysis is used to show the possible advantage of such reduction on the NPV. The parameter value ranges are derived from West Netherlands Basin HSA doublet examples. The results indicate that a reduction of well spacing from 1400 to 1000 m could already improve NPV by up to 15%. This effect would be larger in more marginally economic HSA doublets compared to the West Netherlands Basin base case scenario. The possibility to reduce well spacing is supported by finite element production simulations, utilizing detailed facies architecture models. Furthermore, our results underline the necessity of detailed facies architecture models to assess the potential and risks of HSA doublets. This factor significantly affects doublet life time and net energy production of the doublet.
Thermodynamic Analysis of Chalk–Brine–Oil Interactions

The surface complexation models (SCMs) are used successfully for describing the thermodynamic equilibrium between the pure calcite surface (carbonate and calcium sites) and brine solutions. In this work, we show that the model parameters that are reported for the calcite–brine system are not applicable to the natural carbonates. We adjust the SCM reaction equilibrium constants by fitting the model to the ζ potential data that are reported for the pulverized Stevns Klint chalk. Then, we use the model, implemented in the PhreeqcRM geochemistry package coupled with a finite volume solver, to predict the breakthrough composition of different ions in the chromatographic experiments on the intact Stevns Klint chalk cores. Again, the model falls short in predicting the reactive transport of brine in a natural carbonate, implying that ζ potential data is not enough for optimizing the SCM model parameters for the reactive transport applications. We propose an optimization procedure that fits the coupled SCM–transport model parameters to the chromatographic (single-phase core flooding) data. The ζ potential measurements are implemented in the optimization scheme as nonlinear constraints. We then use the optimized model to study the thermodynamic equilibrium between the oil and chalk surfaces in the presence of different brine compositions, including the dissolution and precipitation of minerals. We represent the chalk–oil interactions by acid–base equilibrium reactions between the calcium and carbonate sites on the chalk surface and carboxylic acids and amine bases on the oil surface, respectively. Comparing the model results to a data set of the spontaneous imbibition experiments for chalk shows that the remaining oil saturation in the imbibition experiments is correlated with the number of bonds between the amine and carboxylate groups on the oil surface and the carbonate and protonated calcium on the chalk surface.
Three-Dimensional poroelastic effects during hydraulic fracturing in permeable rocks

A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow within the fracture and rock matrix, poroelastic deformation, propagation of the fractures, and fluid leakage into the rock formation. The model is validated against available asymptotic analytical solutions for penny-shaped fractures, in the viscosity-dominated, toughness-dominated, storage-dominated, and leakoff-dominated regimes. However, for intermediate regimes, these analytical solutions cannot be used to predict the key hydraulic fracturing variables, i.e. injection pressure, fracture aperture, and length. For leakoff-dominated cases in permeable rocks, the asymptotic solutions fail to accurately predict the lower-bound for fracture radius and apertures, and the upper-bound for fracture pressure. This is due to the poroelastic effects in the dilated rock matrix, as well as due to the multi-dimensional flow within matrix, which in many simulation codes is idealised as being one-dimensional, normal to the fracture plane.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Imperial College London
Authors: Salimzadeh, S. (Intern), Paluszny, A. (Ekstern), Zimmerman, R. W. (Ekstern)
Number of pages: 11
Pages: 153-163
Publication date: 2017
Main Research Area: Technical/natural sciences
Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds, where n-alkanes were preferred over molasses as carbon source. The bacterium grew slowly when n-alkanes were used as carbon source, however, formation of emulsions and reduction of interfacial tension (IFT) were still observed. The bacterial cells were mainly present at the interface of the synthetic seawater medium and the n-alkanes. The bacterium produced lipopeptide lichenysin G which was detected both in the water and in the emulsion phase. We propose that the bacterial cells themselves or metabolites attached to the cell surface are the main players in the formation of emulsions and IFT reduction.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources Engineering, Centre for oil and gas – DTU, Department of Systems Biology, Metabolomics Platform
Authors: Halim, A. Y. (Intern), Nielsen, S. M. (Intern), Nielsen, K. F. (Intern), Eliasson Lantz, A. (Intern)
Number of pages: 10
Pages: 151–160
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Petroleum Science and Engineering
Volume: 149
ISSN (Print): 0920-4105
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.56 SJR 0.764 SNIP 1.631
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.801 SNIP 1.652 CiteScore 2.38
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.692 SNIP 1.751 CiteScore 1.95
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.822 SNIP 1.901 CiteScore 1.73
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.774 SNIP 1.666 CiteScore 1.42
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.648 SNIP 1.41 CiteScore 1.29
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.746 SNIP 1.724
A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

Measurement systems are being installed in more and more civil structures with the purpose of monitoring the general dynamic behavior of the structure. The instrumentation is typically done with accelerometers, where experimental frequencies and mode shapes can be identified using modal analysis and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed as a unique subset of finite element modes. In this paper the technique is further developed to predict the mode shapes in different states of the structure. Once an estimate of the modes is found, responses can be predicted using the superposition of the modal coordinates weighted by the mode shapes. The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Aarhus University, Universidad de Oviedo
Authors: Skafte, A. (Ekstern), Aenlle, M. L. (Ekstern), Brincker, R. (Intern)
Number of pages: 8
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Smart Materials and Structures
Volume: 25
Issue number: 2
Article number: 025020
ISSN (Print): 0964-1726
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

Modeling of fluid flow in naturally fractured reservoirs is often done through modeling and upscaling of discrete fracture networks (DFNs). The two-dimensional fracture geometry required for DFNs is obtained from subsurface and outcropping analog data. However, these data provide little information on subsurface fracture aperture, which is essential for quantifying porosity and permeability. Apertures are difficult to obtain from either outcropping or subsurface data and are therefore often based on fracture size or scaling relationships, but these do not consider the orientation and spatial distribution of fractures with respect to the in situ stress field. Using finite-element simulations, mechanical aperture can be modeled explicitly, but because changes in fracture geometry require renewed meshing and simulating, this approach is not easily integrated into subsurface DFN modeling workflows. We present a geometrically based method for calculating the shear-induced hydraulic aperture, that is, an aperture of up to 0.5 mm (0.02 in.) that can result from shear displacement along irregular fracture walls. The geometrically based method does not require numerical simulations, but it can instead be directly applied to DFNs using the fracture orientation and spacing distributions in combination with an estimate of the regional stress tensor and orientation. The frequency distribution of hydraulic aperture from the
A geometrically based method is compared with finite-element models constructed from five real fracture networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%.

General information
- **State:** Published
- **Organisations:** Centre for oil and gas – DTU, Delft University of Technology
- **Authors:** Bisdom, K. (Ekstern), Bertotti, G. (Ekstern), Nick, H. (Intern)
- **Publication date:** 2016
- **Main Research Area:** Technical/natural sciences

Publication information
- **Journal:** Geological Society of America Bulletin
- **Volume:** 100
- **Issue number:** 7
- **ISSN (Print):** 0016-7606
- **Ratings:**
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 3.86 SJR 2.426 SNIP 1.601
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): SJR 2.273 SNIP 1.486 CiteScore 3.41
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): SJR 2.557 SNIP 1.743 CiteScore 3.87
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): SJR 2.843 SNIP 2.119 CiteScore 4.77
 - ISI indexed (2013): ISI indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): SJR 2.95 SNIP 1.876 CiteScore 4.06
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): SJR 2.794 SNIP 1.724 CiteScore 3.33
 - ISI indexed (2011): ISI indexed yes
 - BFI (2010): BFI-level 1
 - Scopus rating (2010): SJR 2.823 SNIP 1.91
 - BFI (2009): BFI-level 2
 - Scopus rating (2009): SJR 2.716 SNIP 1.799
 - Web of Science (2009): Indexed yes
 - BFI (2008): BFI-level 2
 - Scopus rating (2008): SJR 2.884 SNIP 1.902
 - Web of Science (2008): Indexed yes
 - Scopus rating (2007): SJR 2.76 SNIP 1.945
 - Scopus rating (2006): SJR 2.421 SNIP 2.032
 - Scopus rating (2005): SJR 2.354 SNIP 1.871
 - Scopus rating (2004): SJR 2.457 SNIP 1.695
 - Scopus rating (2003): SJR 2.336 SNIP 1.682
 - Scopus rating (2002): SJR 2.158 SNIP 1.691
 - Scopus rating (2001): SJR 2.409 SNIP 1.641
 - Scopus rating (2000): SJR 2.209 SNIP 1.707
 - Scopus rating (1999): SJR 2.591 SNIP 2.262
Application of infrared thermography for temperature distributions in fluid-saturated porous media

Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media. This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used to minimize the disturbance for flow. Thermocouples give the temperature values at specified positions inside the porous medium, and these values are compared with the values suggested by the infrared thermographic device at the same positions, in the calibration exercise. The calibration process was repeated for different temperatures and flow rates to get the temperature distributions of the whole material inside the system. This technique enables us to measure accurate two-dimensional temperature distributions, which is not possible by using thermocouples only. Continuous point heat sources at different flow rates and temperatures are studied experimentally. Additionally, it offers numerical simulations of the experiments utilizing a finite element-based model. A two-dimensional density and viscosity-dependent flow and transport model accounting for thermal dispersion is utilized to simulate the experimental results. Possible small heat losses from the surface are incorporated in the model according to the properties and thickness of the Plexiglass material used for the construction of the experiment tank. The numerical results agree well with the experimental observations.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Utrecht University
Authors: Imran, M. (Ekstern), Nick, H. (Intern), Schotting, R. J. (Ekstern)
Number of pages: 16
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Arabian Journal of Geosciences
Volume: 9
Issue number: 4
ISSN (Print): 1866-7511
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.371 SNIP 0.723 CiteScore 1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.413 SNIP 0.984 CiteScore 0.85
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.346 SNIP 0.731 CiteScore 0.77
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.312 SNIP 1.136 CiteScore 1.21
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.262 SNIP 0.657 CiteScore 0.75
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.2 SNIP 0.349 CiteScore 0.62
Scopus rating (2010): SJR 0.136 SNIP 0.179
Scopus rating (2009): SJR 0.11 SNIP 0.062
Original language: English
Infrared thermography, Saturated porous medium, Temperature measurement, Thermal dispersion
DOIs:
10.1007/s12517-016-2353-6
As a consequence of a paper presented by Michael Mistler at the VDI-Baudynamik-Tagung in Kassel, Germany, in April 2015, the authors checked the damping coefficients having been estimated for a footbridge in autumn 2014. Mistler stated that the critical damping ratio estimated from a halfpower bandwidth procedure to be dependent on frequency resolution for low frequency modes. Based on the data presented here this statement can be confirmed. The dependency on frequency resolution was found to be due to the leakage phenomenon on the spectral density. This fact may have been known in the academic world but not in the world of engineers applying OMA in practice. In this paper it is presented how the leakage on the spectral density estimate is affecting the damping estimation through OMA based frequency domain identification. Finally the paper compares the damping estimated in the time and frequency domain from ambient tests, with the damping estimated from the free decays. Unfortunately, bias error on damping values determined from analyses in the frequency domain is worst on low frequency modes usually being the most important ones when dealing with a resonance problem in practice.

Fracture Toughness Characterization of Honeycomb Core Sandwich Composites in Mode - I: A Comparative Study

As a consequence of a paper presented by Michael Mistler at the VDI-Baudynamik-Tagung in Kassel, Germany, in April 2015, the authors checked the damping coefficients having been estimated for a footbridge in autumn 2014. Mistler stated that the critical damping ratio estimated from a halfpower bandwidth procedure to be dependent on frequency resolution for low frequency modes. Based on the data presented here this statement can be confirmed. The dependency on frequency resolution was found to be due to the leakage phenomenon on the spectral density. This fact may have been known in the academic world but not in the world of engineers applying OMA in practice. In this paper it is presented how the leakage on the spectral density estimate is affecting the damping estimation through OMA based frequency domain identification. Finally the paper compares the damping estimated in the time and frequency domain from ambient tests, with the damping estimated from the free decays. Unfortunately, bias error on damping values determined from analyses in the frequency domain is worst on low frequency modes usually being the most important ones when dealing with a resonance problem in practice.
In Situ Techniques for the Investigation of the Kinetics of Austenitization of Suppermartensitic Stainless Steel

The austenitization and inter-critical annealing of X4CrNiMo16-5-1 (1.4418) supermartensitic stainless steel were investigated in-situ with synchrotron X-ray diffraction (XRD), dilatometry and differential scanning calorimetry (DSC) under isochronal heating conditions. Austenitization occurred in two stages: the austenitization started at approx. 600 °C, decelerated at approx. 700 °C at 60 to 75 v.% of transformed austenite, and first resumed after heating for approx. 100 °C. This plateau in the transformation curve was more dominant for faster heating rates. Intercritical annealing at 675 and 700 °C revealed, that austenite can to a certain extent be stabilized to room-temperature. There was good agreement for the transformation curves yielded by dilatometry and XRD. Some deviation occurred due to the different applied heating principles, different temperature monitoring and the impact of surface martensite formation on the XRD measurement. The applicable temperature range for DSC as well as the close proximity of the A_{c1}- and the Curie temperature limited the usage of the technique in the present case.
Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products. One of the ways of bacterial survival and propagation under harsh reservoir conditions is formation of spores. A model has been developed that accounts for bacterial growth, substrate consumption, surfactant production, attachment/filtering out, sporulation, and reactivation. Application of spore-forming bacteria is an advantageous novelty of the present approach. The mathematical setup is a set of 1D transport equations involving reactions and attachment. Characteristic sigmoidal curves are used to describe sporulation and reactivation in response to substrate concentrations. The role of surfactant is modification of the relative permeabilities by decreasing the interfacial tension. Attachment of bacteria reduces the pore space available for flow, i.e., the effective porosity and permeability. Clogging of specific areas may occur. An extensive study of the MEOR on the basis of the developed model has resulted in the following conclusions. In order to obtain sufficient local concentrations of surfactant, substantial amounts of substrate should be supplied; however, massive growth of bacteria increases the risk for clogging at the well inlet areas, causing injectivity loss. In such areas, starvation may cause sporulation, reducing the risk of clogging. Substrate released during sporulation can be utilized by attached vegetative bacteria and they will continue growing and producing surfactant, which prolongs the effect of the injected substrate. The simulation scenarios show that application of the spore-forming bacteria gives a higher total production of surfactant and the reduced risk of clogging, leading to an increased period of production and a higher oil recovery.
Orbital calibration of the late Campanian carbon isotope event in the North Sea

A new record of carbon isotopes, nannofossil biostratigraphy, gamma-ray and Fe content variations is presented for the upper Campanian of the Adda-3 core, Danish Central Graben, North Sea. The studied interval provides a revision of previously assigned late Coniacian to early Santonian ages. New biostratigraphic data indicate a late Campanian age for the 60m thick studied interval. The Late Campanian Event (LCE) is well recorded by a 1.5 parts per thousand negative excursion in the bulk δ13C, along with two stepwise pre-excursion negative shifts (defining the pre-LCE). The amplitude of the LCE appears higher in the North Sea than in other areas as seen from the correlation to Germany, the UK and France. This correlation allows identification of a new 0.4 parts per thousand negative excursion (defined as the conica event). Fe and gamma-ray variations are used to calibrate the record with cyclostratigraphy. Fourteen 405 kyr cycles identified in the upper Campanian of Adda-3 can be correlated to North Germany. The compilation of previous results from North
Germany and correlation to Adda-3 shows that the Boreal upper Campanian spans a total of 17 cycles each of 405 kyr; that is, 6.885myr. The duration of the LCE is estimated to be c. 1 myr at Adda-3 and in North Germany.
The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.
Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ_1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.
The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs

A three-dimensional model is used to study the influence of facies heterogeneity on energy production under different operational conditions of low-enthalpy geothermal doublet systems. Process-based facies modelling is utilised for the
Nieuwerkerk sedimentary formation in the West Netherlands Basin to construct realistic reservoir models honouring geological heterogeneity. A finite element based reservoir simulator is used to model the fluid flow and heat transfer over time. A series of simulations is carried out to examine the effects of reservoir heterogeneity (Net-to-Gross ratio, N/G) on the life time and the energy recovery rate for different discharge rates and the production temperature (Tmin) above which the doublet is working. With respect to the results, we propose a design model to estimate the life time and energy recovery rate of the geothermal doublet. The life time is estimated as a function of N/G, Tmin and discharge rate, while the design model for the energy recovery rate is only a function of N/G and Tmin. Both life time and recovery show a positive relation with an increasing N/G. Further our results suggest that neglecting details of process-based facies modelling may lead to significant errors in predicting the life time of low-enthalpy geothermal systems for N/G values below 70%.

General information
State: Published
Organisations: Centre for oil and gas – DTU, Delft University of Technology
Authors: Crooijmans, R. A. (Ekstern), Willems, C. J. L. (Ekstern), Nick, H. (Intern), Bruhn, D. F. (Ekstern)
Number of pages: 11
Pages: 209-219
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Geothermics
Volume: 64
ISSN (Print): 0375-6505
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.67 SJR 0.943 SNIP 1.417
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.344 SNIP 1.987 CiteScore 2.99
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.924 SNIP 3.002 CiteScore 3.61
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.851 SNIP 2.423 CiteScore 3.08
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.177 SNIP 1.81 CiteScore 1.89
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.955 SNIP 1.973 CiteScore 1.9
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.795 SNIP 1.757
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.009 SNIP 2.693
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.839 SNIP 1.377
Scopus rating (2007): SJR 0.736 SNIP 1.428
Scopus rating (2006): SJR 0.472 SNIP 1.301
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.674 SNIP 0.852
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.284 SNIP 0.806
Scopus rating (2003): SJR 0.546 SNIP 1.078
Scopus rating (2002): SJR 0.592 SNIP 0.721
Scopus rating (2001): SJR 0.345 SNIP 0.731
Scopus rating (2000): SJR 0.311 SNIP 0.809
Scopus rating (1999): SJR 0.416 SNIP 0.773
Original language: English
Doublet, Geothermal, Heterogeneity, Net-to-Gross ratio, Non-isothermal flow, Sedimentary formation, Variable fluid properties
Electronic versions:
1_s2.0_S0375650516300517_main.pdf
DOIs:
10.1016/j.geothermics.2016.06.004
Source: Findit
Source-ID: 2305929436
Publication: Research - peer-review › Journal article – Annual report year: 2016

Projects:

Risk Based Asset Management of subsurface wells against corrosion and scale
Centre for oil and gas – DTU
Aalborg University
Period: 01/03/2017 → …
Number of participants: 1
Project participant:
Miraglia, Simona (Intern)

Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource
Centre for oil and gas – DTU
Period: 01/03/2016 → 31/08/2019
Number of participants: 1
Acronym: SURE
Project ID: 654662
Project participant:
Nick, Hamid (Intern)

Financing sources
Source: EU research programme (public)
Name of research programme: H2020
Web address: http://cordis.europa.eu/project/rcn/199554_en.html

3D imaging center
Department of Physics
Neutrons and X-rays for Materials Physics
Department of Applied Mathematics and Computer Science
Image Analysis & Computer Graphics
Department of Energy Conversion and Storage
Imaging and Structural Analysis
Electrofunctional materials
Centre for oil and gas – DTU
Period: 01/01/2016 → 01/01/2021
Number of participants: 14
Project participant:
Dahl, Anders Bjorholm (Intern)
Oddershede, Jette (Intern)
Trinderup, Camilla Himmelstrup (Intern)
Simonsen, Søren Bredmose (Intern)
Zheng, Yi (Intern)
Brink, Bastian (Intern)
Lauridsen, Torsten (Ekstern)
Thydén, Karl Tor Sune (Intern)
Sanna, Simone (Intern)
Baier, Sina (Intern)
Bentzen, Janet Jonna (Intern)
Christensen, Anders Nymark (Intern)
Project Manager, organisational:
Gundlach, Carsten (Intern)
Project Manager, academic:
Poulsen, Henning Friis (Intern)

Relations
Related projects:
Alliance for Imaging and Modelling of Energy Applications
Publications:
Powder embossing method for selective loading of polymeric microcontainers with drug formulation
Crack Tip Flipping under Mode I Tearing: Investigated by X-Ray Tomography
In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine
Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D
Scene reassembly after multimodal digitization and pipeline evaluation using photorealistic rendering
From concept to in vivo testing: Microcontainers for oral drug delivery
Synthesis and characterization of Fe–Ni/γ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition
Microstructure and micromechanics of the heart urchin test from X-ray tomography
Surface Detection using Round Cut
Characterization of graphite nodules in thick-walled ductile cast iron
High-Performance Microchanneled Asymmetric Gd0.1Ce0.9O0.195-δ-La0.6Sr0.4FeO3-δ-Based Membranes for Oxygen Separation

Activities:

Applying LCA in decision making- the need and the future perspective
Period: 10 May 2017
Yan Dong (Speaker)
Simona Miraglia (Other)
Stefano Manzo (Other)
Stylianos Georgiadis (Other)
Hjalte Jomo Danielsen Sarup (Other)
Elena Boriani (Other)
Tine Hald (Other)
Sebastian Thöns (Other)
Michael Zwicky Hauschild (Other)
Department of Management Engineering
Quantitative Sustainability Assessment
Centre for oil and gas – DTU
Transport DTU
Transport Modelling
Department of Applied Mathematics and Computer Science
Statistics and Data Analysis
Department of Environmental Engineering
Urban Water Systems
National Food Institute
Research Group for Genomic Epidemiology
Department of Civil Engineering
Section for Structural Engineering
Documents:
AbstraApplying LCA in policy decision making_Final
Links:
https://brussels.setac.org/welcome/

Related event
SETAC Europe: 27th Annual Meeting – Environmental Quality Through Transdisciplinary Collaboration
07/05/2017 → 13/07/2017
Brussels, Belgium
Activity: Talks and presentations › Conference presentations

Making sense of big data for Produced Water Treatment
Period: 17 Nov 2016
Thomas Martini Jørgensen (Invited speaker)
Centre for oil and gas – DTU
Department of Applied Mathematics and Computer Science
Statistics and Data Analysis
Documents:
DHRTC-Technology-Conference.

Related event
DHRTC Technology Conference 2016
16/11/2016 → 17/12/2016
Helsingør, Denmark
Activity: Talks and presentations › Conference presentations

Fracture Toughness Characterization of Honeycomb Core Sandwich Composites in Mode - I: A Comparative Study
Vishnu Saseendran (Speaker)
Christian Berggreen (Lecturer)
Leif A. Carlsson (Lecturer)
Department of Mechanical Engineering
Solid Mechanics
Centre for oil and gas – DTU

Description
The aim of this paper is to experimentally investigate face/core fracture toughness and disbond propagation in a honeycomb core sandwich using two contemporary test methods - single cantilever beam (SCB) and double cantilever beam uneven bending moments (DCB-UBM). These test methods will be performed in mode-I conditions to allow comparison.
Degree of recognition: International
11th International Conference on Sandwich Structures (ICSS-11)
20/03/2016 → 22/03/2016
Fort Lauderdale, FL., United States
Activity: Talks and presentations › Conference presentations

Biorefinery Öresund Conference 'Biorefining from raw material to high value products'
Period: 1 May 2012 → 30 Apr 2015
Peam Cheali (Speaker)
Krist V. Gernaey (Speaker)
Gürkan Sin (Speaker)
Department of Chemical and Biochemical Engineering
CAPEC-PROCESS
Centre for oil and gas – DTU

Description
Poster presentation.

Related event
Biorefinery Öresund Conference 'Biorefining from raw material to high value products'
18/09/2013 → …
Ørestad, Denmark
Activity: Talks and presentations › Conference presentations