Corticospinal coherence in the acute and subacute phase after stroke

Objective Stroke is one of the leading causes of physical disability due to damage of the motor cortex or the corticospinal tract. In the present study we set out to investigate the role of adaptations in the corticospinal pathway for motor recovery during the subacute phase after stroke.

Methods We examined 19 patients with clinically diagnosed stroke and 18 controls. The patients had unilateral mild to moderate weakness of the hand. Each patient attended two sessions at approximately 3 days (acute) and 38 days post stroke (subacute). Task-related changes in the communication between motor cortex and muscles were evaluated from coupling in the frequency domain between EEG and EMG during movement of the paretic hand. Results Corticomuscular coherence (CMC) and intermuscular coherence (IMC) were reduced in patients as compared to controls. Paretic hand motor performance improved within 4–6 weeks after stroke, but no change was observed in CMC or IMC. Conclusions CMC and IMC were reduced in patients in the early phase after stroke. However, changes in coherence do not appear to be an efficient marker for early recovery of hand function following stroke.

Significance This is the first study to demonstrate sustained reduced coherence in acute and subacute stroke.

Latest research - DTU Orbit (03/11/2017)
Online short-term forecast of greenhouse heat load using a weather forecast service

In some district heating systems, greenhouses represent a significant share of the total load, and can lead to operational challenges. Short term load forecast of such consumers has a strong potential to contribute to the improvement of the overall system efficiency. This work investigates the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses with different operational characteristics were used, together with weather measurements and a weather forecast service. It was found that these predictors of reduced complexity and computational load performed well at capturing recurring load profiles, but not fast frequency random changes. Overall, the root mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Aalborg University
Authors: Vogler-Finck, P. J. (Ekstern), Bacher, P. (Intern), Madsen, H. (Intern)
Pages: 1298-1310
Publication date: 1 Nov 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Energy
Volume: 205
ISSN (Print): 0306-2619
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.058 SNIP 2.573
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.912 SNIP 2.61 CiteScore 6.4
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 3.254 SNIP 3.28 CiteScore 6.93
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 3.164 SNIP 3.377 CiteScore 6.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles

In this paper, Levenberg–Marquardt inspired sliding mode control theory based adaptation laws are proposed to train an intelligent fuzzy neural network controller for a quadrotor aircraft. The proposed controller is used to control and stabilize a quadrotor unmanned aerial vehicle in the presence of periodic wind gust. A proportional-derivative controller is firstly introduced based on which fuzzy neural network is able to learn the quadrotor's control model on-line. The proposed design allows handling uncertainties and lack of modelling at a computationally inexpensive cost. The parameter update rules of the learning algorithms are derived based on a Levenberg–Marquardt inspired approach, and the proof of the stability of two proposed control laws are verified by using the Lyapunov stability theory. In order to evaluate the performance of the proposed controllers extensive simulations and real-time experiments are conducted. The 3D trajectory tracking problem for a quadrotor is considered in the presence of time-varying wind conditions.

General information
State: Published
Organisations: Nanyang Technological University, Semnan University, University of Essex
Authors: Sarabakha, A. (Ekstern), Imanberdiyev, N. (Ekstern), Kayacan, E. (Ekstern), Khanesar, M. A. (Intern), Hagras, H. (Ekstern)
Number of pages: 20
Pages: 361-380
Publication date: 1 Nov 2017
Main Research Area: Technical/natural sciences
Advanced fabrication of hyperbolic metamaterials

Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which is expected to exhibit hyperbolic properties in the visible range. As the second approach we apply the atomic layer deposition technique to arrange vertical alignment of layers or pillars of heavily doped ZnO or TiN, which
enables us to produce hyperbolic metamaterials for the near- and mid-infrared ranges.

General information

State: Published

Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, DTU Danchip

Authors: Shkondin, E. (Intern), Sukham, J. (Intern), Panah, M. E. A. (Intern), Takayama, O. (Intern), Malureanu, R. (Intern), Jensen, F. (Intern), Lavrinenko, A. (Intern)

Number of pages: 4

Publication date: 14 Sep 2017

Host publication information

Title of host publication: Proceedings of International Conference on Metamaterials and Nanophotonics, METANANO 2017

Volume: 1874

Publisher: American Institute of Physics Inc.

Article number: 020004

ISBN (Electronic): 9780735415546

Experimental Comparison of Probabilistic Shaping Methods for Unrepeated Fiber Transmission

This paper studies the impact of probabilistic shaping on effective signal-to-noise ratios (SNRs) and achievable information rates (AIRs) in a back-to-back configuration and in unrepeated nonlinear fiber transmissions. For back-to-back, various shaped quadrature amplitude modulation (QAM) distributions are found to have the same implementation penalty as uniform input. By demonstrating in transmission experiments that shaped QAM input leads to lower effective SNR than uniform input at a fixed average launch power, we experimentally confirm that shaping enhances the fiber nonlinearities. However, shaping is ultimately found to increase the AIR, which is the most relevant figure of merit as it is directly related to spectral efficiency. In a detailed study of these shaping gains for the nonlinear fiber channel, four strategies for optimizing QAM input distributions are evaluated and experimentally compared in wavelength division multiplexing (WDM) systems. The first shaping scheme generates a Maxwell-Boltzmann (MB) distribution based on a linear additive white Gaussian noise channel. The second strategy uses the Blahut-Arimoto algorithm to optimize an unconstrained QAM distribution for a split-step Fourier method based channel model. In the third and fourth approach, MB-shaped QAM and unconstrained QAM are optimized via the enhanced Gaussian noise (EGN) model. Although the absolute shaping gains are found to be relatively small, the relative improvements by EGN-optimized unconstrained distributions over linear AWGN optimized MB distributions are up to 59%. This general behavior is observed in 9-channel and fully loaded WDM experiments.

General information

State: Accepted/In press

Organisations: Department of Photonics Engineering, Coding and Visual Communication, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, Eindhoven University of Technology, Technische Universitat Munchen

Authors: Renner, J. (Ekstern), Fehenberger, T. (Ekstern), Yankov, M. P. (Intern), Da Ros, F. (Intern), Forchhammer, S. (Intern), Bocherer, G. (Ekstern), Hanik, N. (Ekstern)

Number of pages: 9

Publication date: 13 Sep 2017

Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of Lightwave Technology

ISSN (Print): 0733-8724

Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Gaussian Noise Model, Nonlinear Fiber Channel, Probabilistic Shaping, Wavelength Division Multiplexing
Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light

Phase retrieval is a powerful numerical method that can be used to determine the wavefront of laser beams based only on intensity measurements, without the use of expensive, low-resolution specialized wavefront sensors such as Shack–Hartmann sensors. However, phase retrieval techniques generally suffer from poor convergence and fidelity when the input measurements contain electronic or optical noise and/or an incoherent intensity contribution overlapped with the otherwise spatially coherent laser beam. Here, we present an implementation of a modified version of the standard multiple-plane Gerchberg–Saxton algorithm and demonstrate that it is highly successful at extracting the intensity profile and wavefront of the spatially coherent part of the light from various lasers, including tapered laser diodes, at a very high fidelity despite the presence of incoherent light and noise.

General information
State: Published
Organisations: Department of Photonics Engineering, Diode Lasers and LED Systems
Authors: Hansen, A. K. (Intern)
Pages: 7341-7345
Publication date: 10 Sep 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Optics
Volume: 56
Issue number: 26
ISSN (Print): 1559-128X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.61 SJR 0.633 SNIP 1.095
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.826 SNIP 1.225 CiteScore 1.66
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.066 SNIP 1.534 CiteScore 2.04
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.991 SNIP 1.616 CiteScore 1.98
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.046 SNIP 1.496 CiteScore 1.79
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.044 SNIP 1.777 CiteScore 1.92
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.082 SNIP 1.636
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.222 SNIP 1.71
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.334 SNIP 1.711
Web of Science (2008): Indexed yes
Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques

The lighter weight, improved thermal properties and better acoustic insulation of hollow-core concrete blocks are few of the characteristics that one encounters when comparing them to traditional Maltese globigerina limestone solid blocks. As a result, hollow concrete blocks have recently been in greater demand. However, their transmittance, or U-value, is still quite high and does not meet the minimum energy requirements for constructing new buildings. This paper is focused on the investigation of the thermal properties of a new building block, developed as part of a nationally-funded research project ThermHCB, with the aim of improving the U-value of such blocks without changing their compressive strength, physical dimensions or manufacturing process. Measurement techniques were applied to obtain comparative values of the thermal transmittance for standard and improved HCBs, using different EN and draft standards. Compressive testing was carried out concurrently in order to ensure that the minimum benchmark compressive strength was reached. The comparison between these results provides information on the reliability of the methodologies used to determine the thermal properties of building elements in-situ, without having to conduct such tests in a laboratory hot box setup.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science , Dynamical Systems, University of Malta, Galea Curmi Engineering Services Ltd.
Authors: Caruana, C. (Ekstern), Yousif, C. (Ekstern), Bacher, P. (Intern), Buhagiar, S. (Ekstern), Grima, C. (Ekstern)
Pages: 336-346
Publication date: 1 Sep 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Building Engineering
Volume: 13
Ratings:
Scopus rating (2016): CiteScore 2 SNIP 1.055 SJR 0.56
Original language: English
Building envelope, Heat flow, Hollow-core concrete block, Infrared, Insitu, Malta
DOIs:
10.1016/j.jobe.2017.09.005
Source: Scopus
Source-ID: 85029520499
Publication: Research - peer-review › Journal article – Annual report year: 2017
The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice

A mucus layer covers and protects the intestinal epithelial cells from direct contact with microbes. This mucus layer not only prevents inflammation but also plays an essential role in microbiota colonization, indicating the complex interplay between mucus composition-microbiota and intestinal health. However, it is unknown whether the mucus layer is influenced by age or sex and whether this contributes to reported differences in intestinal diseases in males and females or with ageing. Therefore, in this study we investigated the effect of age on mucus thickness, intestinal microbiota composition and immune composition in relation to sex. The ageing induced shrinkage of the colonic mucus layer was accompanied by bacterial penetration and direct contact of bacteria with the epithelium in both sexes. Additionally, several genes involved in the biosynthesis of mucus were downregulated in old mice, especially in males, and this was accompanied by a decrease in abundances of various Lactobacillus species and unclassified Clostridiales type IV and XIV and increase in abundance of the potential pathobiont Bacteroides vulgatus. The changes in mucus and microbiota in old mice were associated with enhanced activation of the immune system as illustrated by a higher percentage of effector T cells in old mice. Our data contribute to a better understanding of the interplay between mucus-microbiota and immune responses and ultimately may lead to more tailored design of strategies to modulate mucus production in targeted groups.
Optimal pseudorandom sequence selection for online c-VEP based BCI control applications

Background: In a c-VEP BCI setting, test subjects can have highly varying performances when different pseudorandom sequences are applied as stimulus, and ideally, multiple codes should be supported. On the other hand, repeating the experiment with many different pseudorandom sequences is a laborious process. Aims: This study aimed to suggest an efficient method for choosing the optimal stimulus sequence based on a fast test and simple measures to increase the performance and minimize the time consumption for research trials. Methods: A total of 21 healthy subjects were included in an online wheelchair control task and completed the same task using stimuli based on the m-code, the gold-code, and the Barker-code. Correct/incorrect identification and time consumption were obtained for each identification. Subject-specific templates were characterized and used in a forward-step first-order model to predict the chance of completion and accuracy score. Results: No specific pseudorandom sequence showed superior accuracy on the group basis. When isolating the individual performances with the highest accuracy, time consumption per identification was not significantly increased. The Accuracy Score aids in predicting what pseudorandom sequence will lead to the best performance using only the templates. The Accuracy Score was higher when the template resembled a delta function the most and when repeated templates were consistent. For completion prediction, only the shape of the template was a significant predictor. Conclusions: The simple and fast method presented in this study as the Accuracy Score, allows c-VEP based BCI systems to support multiple pseudorandom sequences without increase in trial length. This allows for more personalized BCI systems with better performance to be tested without increased costs.
A bacterial cell factory for efficient production of ethanol from whey
The invention relates to a method for homo-ethanol production from lactose using a genetically modified lactic acid bacterium of the invention, where the cells are provided with a substrate comprising dairy waste supplemented with an amino nitrogen source (such as acid hydrolysed corn steep liquor). The invention further relates to genetically modified lactic acid bacterium and its use for homo-ethanol production from lactose in dairy waste. The lactic acid bacterium comprises both genes (lacABCD, LacEF, lacG) encoding enzymes catalysing the lactose catabolism pathway; and transgenes (pdc and adhB) encoding enzymes catalysing the conversion of pyruvate to ethanol. Additionally a number of genes (Idh, pta and adhE) are deleted in order to maximise homo-ethanol production as compared to production of lactate, acetoin and acetate production.
Evaluation of pharmacokinetic model designs for subcutaneous infusion of insulin aspart

Effective mathematical modelling of continuous subcutaneous infusion pharmacokinetics should aid understanding and control in insulin therapy. Thorough analysis of candidate model performance is important for selecting the appropriate models. Eight candidate models for insulin pharmacokinetics included a range of modelled behaviours, parameters and complexity. The models were compared using clinical data from subjects with type 1 diabetes with continuous subcutaneous insulin infusion. Performance of the models was compared through several analyses: R^2 for goodness of fit; the Akaike Information Criterion; a bootstrap analysis for practical identifiability; a simulation exercise for predictability. The simplest model fit poorly to the data ($R^2 = 0.53$), had the highest Akaike score, and worst prediction. Goodness of fit improved with increasing model complexity ($R^2 = 0.85–0.92$) but Akaike scores were similar for these models. Complexity increased practical non-identifiability, where small changes in the dataset caused large variation (CV > 10%) in identified parameters in the most complex models. Best prediction was achieved in a relatively simple model. Some model complexity was necessary to achieve good data fit but further complexity introduced practical non-identifiability and worsened prediction capability. The best model used two linear subcutaneous compartments, an interstitial and plasma compartment, and two identified variables for interstitial clearance and subcutaneous transfer rate. This model had optimal performance trade-off with reasonable fit ($R^2 = 0.85$) and parameterisation, and best prediction and practical identifiability (CV < 2%).

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Scientific Computing, Dynamical Systems, University of Canterbury, University of Copenhagen
Authors: Mansell, E. J. (Ekstern), Schmidt, S. (Ekstern), Docherty, P. D. (Ekstern), Nørgaard, K. (Ekstern), Jørgensen, J. B. (Intern), Madsen, H. (Intern)
Pages: 477-489
Publication date: 22 Aug 2017
Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of Pharmacokinetics and Pharmacodynamics
Volume: 44
Issue number: 5
ISSN (Print): 1567-567X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.8 SJR 0.696 SNIP 0.801
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.709 SNIP 0.953 CiteScore 1.77
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.696 SNIP 0.851 CiteScore 1.82
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.561 SNIP 0.802 CiteScore 1.7
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.974 SNIP 1.179 CiteScore 2.07
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.955 SNIP 1.109 CiteScore 2.2
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.884 SNIP 0.79
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.072 SNIP 1.226
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.024 SNIP 0.993
Scopus rating (2007): SJR 0.579 SNIP 0.938
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.452 SNIP 0.758
Scopus rating (2005): SJR 0.577 SNIP 1.109
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.558 SNIP 0.99
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.67 SNIP 1.107
Scopus rating (2002): SJR 0.538 SNIP 1.08
Scopus rating (2001): SJR 0.452 SNIP 0.732
Scopus rating (2000): SJR 0.331 SNIP 1.025
Scopus rating (1999): SJR 0.798 SNIP 1.064
Original language: English
Continuous subcutaneous insulin infusion, Goodness of fit, Parameter identification, Pharmacokinetic modelling, Practical identifiability, Type 1 diabetes
DOIs:
10.1007/s10928-017-9535-z
Source: Scopus
Source-ID: 85027876150
Publication: Research › peer-review › Journal article – Annual report year: 2017

ARTEK's sommerforskning i Qeqertat

General information
State: Published
Organisations: Department of Civil Engineering, ARTEK, Section for Arctic Engineering and Sustainable Solutions
Authors: Hendriksen, K. (Intern)
Publication date: 16 Aug 2017

Publication information
Newspaper: AG Grønlandsposten
Main Research Area: Technical/natural sciences
Publication: Communication › Newspaper article – Annual report year: 2017

Sommerens ARTEK forskning i Qaanaaq

General information
State: Published
Organisations: Department of Civil Engineering, ARTEK, Section for Arctic Engineering and Sustainable Solutions
Authors: Hendriksen, K. (Intern)
Publication date: 16 Aug 2017

Publication information
Newspaper: AG Grønlandsposten
Main Research Area: Technical/natural sciences
Publication: Communication › Newspaper article – Annual report year: 2017

Arktiske ingeniører – forskning i Qaanaaq

General information
State: Published
Organisations: Department of Civil Engineering, ARTEK, Section for Arctic Engineering and Sustainable Solutions
Authors: Hendriksen, K. (Intern)
Publication date: 16 Aug 2017

Publication information
Newspaper: AG Grønlandsposten
Main Research Area: Technical/natural sciences
Multi-criteria assessment tool for sustainability appraisal of remediation alternatives for a contaminated site

Purpose: In order to improve and support decision-making for the selection of remedial techniques for contaminated sites, a multi-criteria assessment (MCA) method has been developed. The MCA framework is structured in a decision process actively involving stakeholders, and compares the sustainability of remediation alternatives by integrating environmental, societal, and economic criteria in the assessment. Materials and methods: The MCA includes five main decision criteria: remedial effect, remediation cost, remediation time, environmental impacts, and societal impacts. The main criteria are divided into a number of sub-criteria. The environmental impacts consider secondary impacts to the environment caused by remedial activities and are assessed by life-cycle assessment (LCA). The societal impacts mainly consider local impacts and are assessed in a more qualitative manner on a scale from 1 to 5. The performance on each main criterion is normalized to a score between 0 and 1, with 1 being the worst score. An overall score is obtained by calculating a weighted sum with criteria weights determined by stakeholders. The MCA method was applied to assess remediation alternatives for the Groyne 42 site, one of the largest contaminated sites in Denmark. Results and discussion: The compared remediation alternatives for the site were: (1) excavation of the site followed by soil treatment; (2) in situ alkaline hydrolysis; (3) in situ thermal remediation; and (4) continued encapsulation of the site by sheet piling. Criteria weights were derived by a stakeholder panel. The stakeholders gave the highest weighting to the remedial effect of the methods and to the societal impacts. For the Groyne 42 case study, the excavation option obtained the lowest overall score in the MCA, and was therefore found to be the most sustainable option. This was especially due to the fact that this option obtained a high score in the main categories Effect and Social impacts, which were weighted highest by the stakeholders. Conclusions: The developed MCA method is structured with five main criteria. Effect and time are included in addition to the three pillars of sustainability (environment, society, and economy). The remedial effect of remediation is therefore assessed and weighted separately from the main criteria environment. This structure makes interpretation of criteria scores more transparent and emphasizes the importance of effect and time as decision parameters. This also facilitated an easier weighting procedure for the stakeholders in the case study, who expressed a wish to weigh the remedial effect independently from the secondary environmental impacts.
Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerically predict the wavelength conversion efficiency for degenerate four-wave mixing, and obtain a 3 dB bandwidth of 80 nm.

General information
State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications, Nanophotonic Devices, High-Speed Optical Communication, Diode Lasers and LED Systems, Technical University of Denmark
Authors: Guo, K. (Ekstern), Christensen, J. B. (Intern), Christensen, E. N. (Intern), Ding, Y. (Intern), Ou, H. (Intern), Rottwitt, K. (Intern)
Number of pages: 2
Pages: 57-58
Publication date: 11 Aug 2017

Host publication information
Title of host publication: 17th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2017
Publisher: IEEE Computer Society Press
Article number: 8009989
ISBN (Electronic): 9781509053230
Main Research Area: Technical/natural sciences
Conference: 17th International Conference on Numerical Simulation of Optoelectronic Devices, Lyngby, Denmark, 24/07/2017 - 24/07/2017
DOIs:
10.1109/NUSOD.2017.8009989
Source: Scopus
Source-ID: 85028598353
Publication: Research - peer-review › Article in proceedings – Annual report year: 2017

Strain tuning of optical properties in Bi₂Se₃

Based on symmetry principles we determine the most general Hamiltonian for the low energy physics of Bi₂Se₃, including contributions due to a static electric field and strain. The full three-dimensional model is projected into the surface states at k= 0, giving an effective two-dimensional Hamiltonian for the surface states. Contributions from the strain tensor breaks the anisotropy of the surface state spectrum, giving an elliptical Dirac cone. Within this model we calculate the absorption
spectrum for an ultra-thin film. We show that the fundamental absorption edge can be effectively tuned by application of uniaxial strain.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Jensen, M. R. (Intern), Mørk, J. (Intern), Willatzen, M. (Intern)
Number of pages: 2
Pages: 85-86
Publication date: 11 Aug 2017

Host publication information
Title of host publication: 17th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2017
Publisher: IEEE Computer Society Press
Article number: 8010003
ISBN (Electronic): 9781509053230
Main Research Area: Technical/natural sciences
Conference: 17th International Conference on Numerical Simulation of Optoelectronic Devices, Lyngby, Denmark, 24/07/2017 - 24/07/2017
DoIs: 10.1109/NUSOD.2017.8010003
Source: Scopus
Source-ID: 85028594554
Publication: Research - peer-review › Article in proceedings – Annual report year: 2017

Mode conversion enables optical pulling force in photonic crystal waveguides
We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems.

General information
State: Published
Organisations: Technical University of Denmark, Department of Photonics Engineering, Plasmonics and Metamaterials, Harbin Institute of Technology, North South University
Authors: Zhu, T. (Ekstern), Novitsky, A. (Intern), Cao, Y. (Ekstern), Mahdy, M. R. (Ekstern), Wang, Z. L. (Ekstern), Sun, F. (Ekstern), Jiang, Z. (Ekstern), Ding, W. (Ekstern)
Publication date: 7 Aug 2017
Main Research Area: Technical/natural sciences

Publication information
Volume: 111
Issue number: 6
Article number: 061105
ISSN (Print): 0003-6951
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.67 SJR 1.132 SNIP 0.996
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.085 SNIP 0.983 CiteScore 2.47
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.799 SNIP 1.462 CiteScore 3.25
"Oh-my-God"-partiklen
Detekteret. Nogle partikler fra det ydre rum har så høj energi, at de egentlig ikke burde være her. De er kosmologiens svar på humlebien, der ikke kan flyve, og fysikere leder stadig efter en god forklaring.
Resonant power converter with dead-time control of synchronous rectification circuit

The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second semiconductor switches, respectively, separated by intervening dead-time periods in accordance with first and second rectification control signals. A dead-time controller is coupled to the resonant output voltage or the resonant input voltage and configured for adaptively adjusting lengths of the dead-time periods via the first and second rectification control signals.

General information
State: Published
Organisations: Department of Electrical Engineering, Electronics, Department of Applied Electronics
Authors: Ekhtiari, M. (Intern), Zsurzsan, T. (Intern), Andersen, M. A. E. (Intern)
Publication date: 20 Jul 2017